SLAZ100AA October   2012  – May 2021 CC430F6127

 

  1. 1Functional Advisories
  2. 2Preprogrammed Software Advisories
  3. 3Debug Only Advisories
  4. 4Fixed by Compiler Advisories
  5. 5Nomenclature, Package Symbolization, and Revision Identification
    1. 5.1 Device Nomenclature
    2. 5.2 Package Markings
      1.      RGC64
    3. 5.3 Memory-Mapped Hardware Revision (TLV Structure)
  6. 6Advisory Descriptions
    1. 6.1  AES1
    2. 6.2  BSL7
    3. 6.3  COMP4
    4. 6.4  COMP10
    5. 6.5  CPU18
    6. 6.6  CPU20
    7. 6.7  CPU21
    8. 6.8  CPU22
    9. 6.9  CPU23
    10. 6.10 CPU24
    11. 6.11 CPU25
    12. 6.12 CPU26
    13. 6.13 CPU27
    14. 6.14 CPU28
    15. 6.15 CPU29
    16. 6.16 CPU30
    17. 6.17 CPU31
    18. 6.18 CPU32
    19. 6.19 CPU33
    20. 6.20 CPU34
    21. 6.21 CPU35
    22. 6.22 CPU39
    23. 6.23 CPU40
    24. 6.24 CPU46
    25. 6.25 CPU47
    26. 6.26 DMA4
    27. 6.27 DMA7
    28. 6.28 DMA8
    29. 6.29 DMA10
    30. 6.30 EEM8
    31. 6.31 EEM9
    32. 6.32 EEM11
    33. 6.33 EEM13
    34. 6.34 EEM14
    35. 6.35 EEM16
    36. 6.36 EEM17
    37. 6.37 EEM19
    38. 6.38 EEM23
    39. 6.39 FLASH29
    40. 6.40 FLASH31
    41. 6.41 FLASH37
    42. 6.42 JTAG20
    43. 6.43 JTAG26
    44. 6.44 JTAG27
    45. 6.45 LCDB1
    46. 6.46 LCDB3
    47. 6.47 LCDB4
    48. 6.48 LCDB5
    49. 6.49 LCDB6
    50. 6.50 MPY1
    51. 6.51 PMAP1
    52. 6.52 PMM8
    53. 6.53 PMM9
    54. 6.54 PMM10
    55. 6.55 PMM11
    56. 6.56 PMM12
    57. 6.57 PMM14
    58. 6.58 PMM15
    59. 6.59 PMM17
    60. 6.60 PMM18
    61. 6.61 PMM20
    62. 6.62 PORT15
    63. 6.63 PORT16
    64. 6.64 PORT17
    65. 6.65 PORT19
    66. 6.66 PORT21
    67. 6.67 RF1A1
    68. 6.68 RF1A2
    69. 6.69 RF1A3
    70. 6.70 RF1A5
    71. 6.71 RF1A6
    72. 6.72 RF1A8
    73. 6.73 RTC3
    74. 6.74 RTC6
    75. 6.75 SYS16
    76. 6.76 TAB23
    77. 6.77 UCS6
    78. 6.78 UCS7
    79. 6.79 UCS9
    80. 6.80 UCS10
    81. 6.81 UCS11
    82. 6.82 USCI26
    83. 6.83 USCI30
    84. 6.84 USCI31
    85. 6.85 USCI34
    86. 6.86 USCI35
    87. 6.87 USCI39
    88. 6.88 USCI40
    89. 6.89 WDG4
  7. 7Revision History

CPU46

CPU Module

Category

Functional

Function

POPM peforms unexpected memory access and can cause VMAIFG to be set

Description

When the POPM assembly instruction is executed, the last Stack Pointer increment is followed by an unintended read access to the memory. If this read access is performed on vacant memory, the VMAIFG will be set and can trigger the corresponding interrupt (SFRIE1.VMAIE) if it is enabled. This issue occurs if the POPM assembly instruction is performed up to the top of the STACK.

Workaround

If the user is utilizing C, they will not be impacted by this issue. All TI/IAR/GCC pre-built libraries are not impacted by this bug. To ensure that POPM is never executed up to the memory border of the STACK when using assembly it is recommended to either

1. Initialize the SP to
a. TOP of STACK - 4 bytes if POPM.A is used
b. TOP of STACK - 2 bytes if POPM.W is used

OR

2. Use the POPM instruction for all but the last restore operation. For the the last restore operation use the POP assembly instruction instead.

For instance, instead of using:


POPM.W #5,R13 



Use:


POPM.W #4,R12
POP.W R13



Refer to the table below for compiler-specific fix implementation information.

IDE/Compiler Version Number Notes
IAR Embedded Workbench Not affected C code is not impacted by this bug. User using POPM instruction in assembler is required to implement the above workaround manually.
TI MSP430 Compiler Tools (Code Composer Studio) Not affected C code is not impacted by this bug. User using POPM instruction in assembler is required to implement the above workaround manually.
MSP430 GNU Compiler (MSP430-GCC) Not affected C code is not impacted by this bug. User using POPM instruction in assembler is required to implement the above workaround manually.