SLOS630C December   2010  – November 2014 TLV320AIC3256

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Simplified Block Diagram
  5. Revision History
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  Handling Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Thermal Information
    5. 8.5  Electrical Characteristics, ADC
    6. 8.6  Electrical Characteristics, Bypass Outputs
    7. 8.7  Electrical Characteristics, Microphone Interface
    8. 8.8  Electrical Characteristics, Audio DAC Outputs
    9. 8.9  Electrical Characteristics, Misc.
    10. 8.10 Electrical Characteristics, Logic Levels
    11. 8.11 I2S/LJF/RJF Timing in Master Mode (see )
    12. 8.12 I2S/LJF/RJF Timing in Slave Mode (see )
    13. 8.13 DSP Timing in Master Mode (see )
    14. 8.14 DSP Timing in Slave Mode (see )
    15. 8.15 Digital Microphone PDM Timing (see )
    16. 8.16 I2C Interface Timing
    17. 8.17 SPI Interface Timing
    18. 8.18 Typical Characteristics
      1. 8.18.1 Typical Performance
      2. 8.18.2 FFT
  9. Parameter Measurement Information
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Functional Block Diagram
    3. 10.3 Feature Description
      1. 10.3.1 Device Connections
        1. 10.3.1.1 Digital Pins
          1. 10.3.1.1.1 Multifunction Pins
        2. 10.3.1.2 Analog Pins
      2. 10.3.2 Analog Audio I/O
        1. 10.3.2.1 Analog Bypass
        2. 10.3.2.2 ADC Bypass Using Mixer Amplifiers
        3. 10.3.2.3 Headphone Output
        4. 10.3.2.4 Line Outputs
      3. 10.3.3 ADC
        1. 10.3.3.1 ADC Processing
          1. 10.3.3.1.1 ADC Processing Blocks
      4. 10.3.4 DAC
        1. 10.3.4.1 DAC Processing Blocks — Overview
      5. 10.3.5 PowerTune
      6. 10.3.6 Digital Audio IO Interface
      7. 10.3.7 Clock Generation and PLL
      8. 10.3.8 Control Interfaces
        1. 10.3.8.1 I2C Control
        2. 10.3.8.2 SPI Control
    4. 10.4 Device Functional Modes
      1. 10.4.1 MiniDSP
      2. 10.4.2 Software
    5. 10.5 Register Map
      1. 10.5.1 Register Map Summary
  11. 11Application and Implementation
    1. 11.1 Application Information
    2. 11.2 Typical Application
      1. 11.2.1 Design Requirements
        1. 11.2.1.1 Charge Pump Flying and Holding Capacitor
        2. 11.2.1.2 Reference Filtering Capacitor
        3. 11.2.1.3 MICBIAS
      2. 11.2.2 Detailed Design Procedures
        1. 11.2.2.1 Analog Input Connection
        2. 11.2.2.2 Analog Output Connection
      3. 11.2.3 Application Curves
  12. 12Power Supply Recommendations
  13. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Layout Example
  14. 14Device and Documentation Support
    1. 14.1 Documentation Support
      1. 14.1.1 Related Documentation
    2. 14.2 Trademarks
    3. 14.3 Electrostatic Discharge Caution
    4. 14.4 Glossary
  15. 15Mechanical, Packaging, and Orderable Information

8 Specifications

8.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
AVdd to AVss –0.3 2.2 V
DVdd to DVss –0.3 2.2 V
Vsys to DVss –0.3 5.5 V
IOVdd to IOVss –0.3 3.9 V
Digital Input voltage IOVss IOVdd + 0.3 V
Analog input voltage AVss AVdd + 0.3 V
Operating temperature range –40 85 °C
Junction temperature (TJ Max) 105 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

8.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range –55 125 °C
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) –2 2 kV
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) –750 750 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

8.3 Recommended Operating Conditions

MIN NOM MAX UNIT
AVDD Power Supply Voltage Range Referenced to AVss(1) 1.5 1.8 1.95 V
IOVDD Referenced to IOVss(1) 1.1 3.6
Vsys Referenced to DVss(1) 1.5 1.8 5.5
DVdd(2) Referenced to DVss(1) 1.26 1.8 1.95
DVDD_CP Power Supply Voltage Range Referenced to DVss(1) 1.26 1.8 1.95 V
DRVDD_HP Referenced to AVss(1) Ground-centered config 1.5 1.8 1.95
Unipolar config 1.5 3.6
PLL Input Frequency Clock divider uses fractional divide
(D > 0), P = 1, DVdd ≥ 1.65V (See table in SLAU306, Maximum TLV320AIC3256 Clock Frequencies)
10 20 MHz
Clock divider uses integer divide
(D = 0), P = 1, DVdd ≥ 1.65V (See table in SLAU306, Maximum TLV320AIC3256 Clock Frequencies)
0.512 20 MHz
MCLK Master Clock Frequency MCLK; Master Clock Frequency; DVdd ≥ 1.65V 50 MHz
MCLK; Master Clock Frequency; DVdd ≥ 1.26V 25
SCL SCL Clock Frequency 400 kHz
Audio input max ac signal swing
(IN1_L, IN1_R, IN2_L, IN2_R, IN3_L, IN3_R)
CM = 0.75 V 0 0.530 0.75 or AVDD -0.75(3) Vpeak
CM = 0.9 V 0 0.707 0.9 or AVDD -0.9(3) Vpeak
LOL, LOR Stereo line output load resistance 0.6 10
HPL, HPR Stereo headphone output load resistance Single-ended configuration 14.4 16 Ω
Headphone output load resistance Differential configuration 24.4 32 Ω
CLout Digital output load capacitance 10 pF
TOPR Operating Temperature Range –40 85 °C
(1) All grounds on board are tied together; they must not differ in voltage by more than 0.2V max, for any combination of ground signals.
(2) At DVdd values lower than 1.65V, the PLL does not function. Please see table in SLAU306, Maximum TLV320AIC3256 Clock Frequencies for details on maximum clock frequencies.
(3) Whichever is smaller

8.4 Thermal Information

THERMAL METRIC(1) TLV320AIC3256 UNIT
RSB (QFN) YZF (DSGBA)
48 PINS 42 PINS
RθJA Junction-to-ambient thermal resistance 32.3 49.7 °C/W
RθJCtop Junction-to-case (top) thermal resistance 22.5 0.1
RθJB Junction-to-board thermal resistance 6.1 7.7
ψJT Junction-to-top characterization parameter 0.3 0.1
ψJB Junction-to-board characterization parameter 6 7.7
RθJCbot Junction-to-case (bottom) thermal resistance 1.7
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

8.5 Electrical Characteristics, ADC

At 25°C, Vsys, AVdd, DVdd, IOVdd, DVdd_CP, DRVdd_HP = 1.8V, fS (Audio) = 48kHz, CREF = 1µF on REF PIN, PLL and Charge pump disabled unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AUDIO ADC (CM = 0.9V)
Input signal level (for 0dB output) Single-ended, CM = 0.9V 0.5 VRMS
Device Setup 1kHz sine wave input
Single-ended Configuration
IN1_R to Right ADC and IN1_L to Left ADC,
RIN = 20kΩ, fS = 48kHz,
AOSR = 128, MCLK = 256 * fS,
PLL Disabled; AGC = OFF,
Channel Gain = 0dB,
Processing Block = PRB_R1,
Power Tune = PTM_R4
SNR Signal-to-noise ratio, A-weighted(1)(2) Inputs ac-shorted to ground 80 93 dB
IN2_R, IN3_R routed to Right ADC and ac-shorted to ground
IN2_L, IN3_L routed to Left ADC and ac-shorted to ground
93
DR Dynamic range A-weighted(1)(2) –60dB full-scale, 1kHz input signal 93 dB
THD+N Total Harmonic Distortion plus Noise –3dB full-scale, 1kHz input signal –84 –70 dB
IN2_R,IN3_R routed to Right ADC
IN2_L, IN3_L routed to Left ADC
–3dB full-scale, 1kHz input signal
–84
AUDIO ADC (CM = 0.75V)
Input signal level (for 0dB output) Single-ended, CM = 0.75V, AVdd = 1.5V 0.375 VRMS
Device Setup: 1kHz sine wave input
Single-ended Configuration
INR, IN2_R, IN3_R routed to Right ADC
INL, IN2_L, IN3_L routed to Left ADC
RIN = 20kΩ, fS = 48kHz,
AOSR = 128, MCLK = 256 * fS,
PLL Disabled, AGC = OFF,
Channel Gain = 0dB,
Processing Block = PRB_R1
Power Tune = PTM_R4
SNR Signal-to-noise ratio, A-weighted (1)(2) Inputs ac-shorted to ground 90 dB
DR Dynamic range A-weighted(1)(2) –60dB full-scale, 1kHz input signal 90 dB
THD+N Total Harmonic Distortion plus Noise –3dB full-scale, 1kHz input signal –81 dB
AUDIO ADC (Gain = 40dB)
Input signal level (for 0dB output) Differential Input, CM = 0.9V, Channel Gain = 40dB 10 mVRMS
Device Setup 1kHz sine wave input
Differential configuration
IN1_L and IN1_R routed to Right ADC
IN2_L and IN2_R routed to Left ADC
RIN = 10kΩ, fS = 48kHz, AOSR = 128
MCLK = 256 * fS PLL Disabled
AGC = OFF
Processing Block = PRB_R1,
Power Tune = PTM_R4
ICN Idle-Channel Noise, A-weighted(1)(2) Inputs ac-shorted to ground, input referred noise 2.8 μVRMS
AUDIO ADC
Gain Error 1kHz sine wave input
Single-ended configuration
RIN = 20kΩ, fS = 48kHz, AOSR = 128,
MCLK = 256 * fS, PLL Disabled
AGC = OFF, Channel Gain = 0dB
Processing Block = PRB_R1,
Power Tune = PTM_R4, CM = 0.9V
0.1 dB
Input Channel Separation 1kHz sine wave input at -3dBFS
Single-ended configuration
IN1_L routed to Left ADC
IN1_R routed to Right ADC, RIN = 20kΩ
AGC = OFF, AOSR = 128,
Channel Gain = 0dB, CM = 0.9V
109 dB
Input Pin Crosstalk 1kHz sine wave input at –3dBFS on IN2_L, IN2_L internally not routed.
IN1_L routed to Left ADC
ac-coupled to ground
108 dB
1kHz sine wave input at –3dBFS on IN2_R,
IN2_R internally not routed.
IN1_R routed to Right ADC
ac-coupled to ground
Single-ended configuration RIN = 20kΩ,
AOSR = 128 Channel, Gain = 0dB, CM = 0.9V
PSRR 217Hz, 100mVpp signal on AVdd,
Single-ended configuration, RIN= 20kΩ,
Channel Gain = 0dB; CM = 0.9V
55 dB
ADC programmable gain amplifier gain Single-Ended, RIN = 10kΩ, PGA gain set to 0dB 0 dB
Single-Ended, RIN = 10kΩ, PGA gain set to 47.5dB 47.5 dB
Single-Ended, RIN = 20kΩ, PGA gain set to 0dB –6 dB
Single-Ended, RIN = 20kΩ, PGA gain set to 47.5dB 41.5 dB
Single-Ended, RIN = 40kΩ, PGA gain set to 0dB –12 dB
Single-Ended, RIN = 40kΩ, PGA gain set to 47.5dB 35.5 dB
ADC programmable gain amplifier step size 1kHz tone 0.5 dB
(1) Ratio of output level with 1kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20Hz to 20kHz bandwidth using an audio analyzer.
(2) All performance measurements done with 20kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values

8.6 Electrical Characteristics, Bypass Outputs

At 25°C, Vsys, AVdd, DVdd, IOVdd, DVdd_CP, DRVdd_HP = 1.8V, fS (Audio) = 48kHz, CREF = 1µF on REF PIN, PLL and Charge pump disabled unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG BYPASS TO HEADPHONE AMPLIFIER, DIRECT MODE
Device Setup Load = 16Ω (single-ended), 50pF;
Input and Output CM = 0.9V;
Headphone Output on DRVdd_HP Supply;
IN1_L routed to HPL and IN1_R routed to HPR;
Channel Gain = 0dB
Gain Error 0.8 dB
Noise, A-weighted(1) Idle Channel, IN1_L and IN1_R ac-shorted to ground 3.3 μVRMS
THD Total Harmonic Distortion 446mVrms, 1kHz input signal –81 dB
ANALOG BYPASS TO LINE-OUT AMPLIFIER, PGA MODE
Device Setup Load = 10kΩ (single-ended), 50pF;
Input and Output CM = 0.9V;
LINE Output on DRVDD_HP Supply;
IN1_L, IN1_R routed to line out
Channel Gain = 0dB
Gain Error Gain Error 0.8 dB
Noise, A-weighted(1) Idle Channel,
IN1_L and IN1_R ac-shorted to ground
6.7 μVRMS
Channel Gain = 40dB,
Input Signal (0dB) = 5mVRMS
Inputs ac-shorted to ground, Input Referred
3 μVRMS
(1) All performance measurements done with 20kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values

8.7 Electrical Characteristics, Microphone Interface

At 25°C, Vsys, AVdd, DVdd, IOVdd, DVdd_CP, DRVdd_HP = 1.8V, fS (Audio) = 48kHz, CREF = 1µF on REF PIN, PLL and Charge pump disabled unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
MICROPHONE BIAS
Bias voltage Bias voltage CM = 0.9V, DRVdd_HP = 1.8V
Micbias Mode 0, Connect to AVdd or DRVdd_HP 1.5 V
Micbias Mode 3, Connect to AVdd AVdd V
Micbias Mode 3, Connect to DRVdd_HP DRVdd_HP V
CM = 0.75V, DRVdd_HP = 1.8V
Micbias Mode 0, Connect to AVdd or DRVdd_HP 1.23 V
Micbias Mode 1, Connect to AVdd or DRVdd_HP 1.43 V
Micbias Mode 3, Connect to AVdd AVdd V
Micbias Mode 3, Connect to DRVdd_HP DRVdd_HP V
MICROPHONE BIAS
Bias voltage Bias voltage CM = 0.9V, DRVdd_HP = 3.3V
Micbias Mode 0, Connect to DRVdd_HP 1.5 V
Micbias Mode 1, Connect to DRVdd_HP 1.7 V
Micbias Mode 2, Connect to DRVdd_HP 2.5 V
Micbias Mode 3, Connect to DRVdd_HP DRVdd_HP V
CM = 0.75V, DRVdd_HP = 3.3V
Micbias Mode 0, Connect to DRVdd_HP 1.23 V
Micbias Mode 1, Connect to DRVdd_HP 1.43 V
Micbias Mode 2, Connect to DRVdd_HP 2.1 V
Micbias Mode 3, Connect to DRVdd_HP DRVdd_HP V
Output Noise CM = 0.9V, Micbias Mode 2, A-weighted, 20Hz to 20kHz bandwidth,
Current load = 0mA.
9.5 μVRMS
Current Sourcing Micbias Mode 2, Connect to DRVdd_HP 3 mA
Inline Resistance Micbias Mode 3, Connect to AVdd 131 Ω
Micbias Mode 3, Connect to DRVdd_HP 89

8.8 Electrical Characteristics, Audio DAC Outputs

At 25°C, Vsys, AVdd, DVdd, IOVdd, DVdd_CP, DRVdd_HP = 1.8V, fS (Audio) = 48kHz, CREF = 1µF on REF PIN, PLL and Charge pump disabled unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AUDIO DAC – STEREO SINGLE-ENDED LINE OUTPUT (CM = 0.9V)
Device Setup Load = 10kΩ (single-ended), 56pF
Line Output on AVdd Supply
Input and Output CM=0.9V
DOSR = 128, MCLK = 256 x fS,
Channel Gain = 0dB, word length = 16 bits,
Processing Block = PRB_P1,
Power Tune = PTM_P3
Full scale output voltage (0dB) 0.5 VRMS
SNR Signal-to-noise ratio A-weighted(1)(2) All zeros fed to DAC input 87 100 dB
DR Dynamic range, A-weighted (1)(2) –60dB 1kHz input full-scale signal, Word length = 20 bits 100 dB
THD+N Total Harmonic Distortion plus Noise –3dB full-scale, 1kHz input signal –81 –70 dB
DAC Gain Error 0dB, 1kHz input full scale signal 0.5 dB
DAC Mute Attenuation Mute 121 dB
DAC channel separation –1dB, 1kHz signal, between left and right HP out 108 dB
DAC PSRR 100mVpp, 1kHz signal applied to AVdd 72 dB
100mVpp, 217Hz signal applied to AVdd 80 dB
AUDIO DAC – STEREO SINGLE-ENDED LINE OUTPUT (CM = 0.75V)
Device Setup Load = 10kΩ (single-ended), 56pF
Line Output on AVdd Supply
Input and Output CM = 0.75V; AVdd = 1.5V
DOSR = 128
MCLK=256 x fS
Channel Gain = 0dB
word length = 20-bits
Processing Block = PRB_P1
Power Tune = PTM_P4
Full scale output voltage (0dB) 0.375 VRMS
SNR Signal-to-noise ratio, A-weighted (1)(2) All zeros fed to DAC input 99 dB
DR Dynamic range, A-weighted (1)(2) –60dB 1kHz input full-scale signal 98 dB
THD+N Total Harmonic Distortion plus Noise –1dB full-scale, 1kHz input signal –77 dB
AUDIO DAC – STEREO SINGLE-ENDED HEADPHONE OUTPUT (GROUND-CENTERED CIRCUIT CONFIGURATION)
Device Setup Load = 16Ω (single-ended), 56pF
Input CM = 0.9V, Output CM = 0V
DOSR = 128,
MCLK = 256x* fS, Channel Gain = 0dB
word length = 16 bits;
Processing Block = PRB_P1
Power Tune = PTM_P3
FS1 Full scale output voltage
(for THD ≤ –40dB)
0.65 VRMS
SNR Signal-to-noise ratio, A-weighted(1)(2) All zeros fed to DAC input 85 95 dB
DR Dynamic range, A-weighted (1)(2) –60dB 1kHz input full-scale signal, Word Length = 20 bits, Power Tune = PTM_P4 93 dB
THD+N Total Harmonic Distortion plus Noise 500mVRMS output (corresponds to FS1 – 2.3dB),
1-kHz input signal
–70 –55 dB
DAC Gain Error 500mVRMS output, 1kHz input full scale signal 0.5 dB
DAC Mute Attenuation Mute 118 dB
DAC channel separation –3dB, 1kHz signal, between left and right HP out 102 dB
DAC PSRR 100mVpp, 1kHz signal applied to AVdd 66 dB
100mVpp, 217Hz signal applied to AVdd 77 dB
Power Delivered THD ≤ –40dB 26.5 mW
FS2 Full scale output voltage
(for THD ≤ –40dB)
Load = 32Ω 0.85 V
SNR Signal-to-noise ratio, A-weighted(1)(2) All zeros fed to DAC input, Load = 32Ω 96 dB
Power Delivered THD ≤ –40dB, Load = 32Ω 22.5 mW
AUDIO DAC – STEREO SINGLE-ENDED HEADPHONE OUTPUT (UNIPOLAR CIRCUIT CONFIGURATION)
Device Setup Load = 16Ω (single-ended), 56pF,
Headphone Output on AVdd Supply,
Input and Output CM = 0.9V
DOSR = 128, MCLK = 256 x fS,
Channel Gain = 0dB
Processing Block = PRB_P1,
Power Tune = PTM_P3
Full scale output voltage (0dB) 0.5 VRMS
SNR Signal-to-noise ratio, A-weighted(1)(2) All zeros fed to DAC input 87 100 dB
DR Dynamic range, A-weighted (1)(2) -60dB 1kHz input full-scale signal 100 dB
THD+N Total Harmonic Distortion plus Noise –3dB full-scale, 1kHz input signal –83 –70 dB
(1) Ratio of output level with 1kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20Hz to 20kHz bandwidth using an audio analyzer.
(2) All performance measured with 20kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values.

8.9 Electrical Characteristics, Misc.

At 25°C, Vsys, AVdd, DVdd, IOVdd, DVdd_CP, DRVdd_HP = 1.8V, fS (Audio) = 48kHz, CREF = 1µF on REF PIN, PLL and Charge pump disabled unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
REFERENCE
Reference Voltage Settings CMMode = 0 (0.9V) 0.9 V
CMMode = 1 (0.75V) 0.75
Reference Noise CM = 0.9V, A-weighted, 20Hz to 20kHz bandwidth, CREF = 1μF 1.1 μVRMS
Decoupling Capacitor 1 μF
Bias Current 120 μA
miniDSP(1)
Maximum miniDSP clock frequency - ADC DVdd = 1.65V 58.9 MHz
Maximum miniDSP clock frequency - DAC DVdd = 1.65V 58.9 MHz
SHUTDOWN CURRENT
Device Setup DVdd is provided externally, no clocks supplied, no digital activity, register values are retained
I(total) Sum of all supply currents, all supplies at 1.8V <10 μA
(1) The miniDSP clock speed is specified by design and not tested in production.

8.10 Electrical Characteristics, Logic Levels(1)

At 25°C, AVDD, DVDD, IOVDD = 1.8 V
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
LOGIC FAMILY CMOS
VIH Logic Level IIH = 5 μA, IOVDD > 1.6V 0.7 × IOVDD V
IIH = 5μA, 1.2V ≤ IOVDD < 1.6V 0.9 × IOVDD V
IIH = 5μA, IOVDD < 1.2V IOVDD V
VIL IIL = 5 μA, IOVDD > 1.6V –0.3 0.3 × IOVDD V
IIL = 5μA, 1.2V ≤ IOVDD < 1.6V 0.1 × IOVDD V
IIL = 5μA, IOVDD < 1.2V 0 V
VOH IOH = 2 TTL loads 0.8 × IOVDD V
VOL IOL = 2 TTL loads 0.1 × IOVDD V
Capacitive Load 10 pF
(1) Applies to all DI, DO, and DIO pins shown in Pin Configuration and Functions

8.11 I2S/LJF/RJF Timing in Master Mode (see Figure 1)

All specifications at 25°C, DVdd = 1.8 V
IOVDD=1.8V IOVDD=3.3V UNIT
MIN MAX MIN MAX
td(WS) WCLK delay 30 20 ns
td(DO-WS) WCLK to DOUT delay (For LJF Mode only) 20 20 ns
td(DO-BCLK) BCLK to DOUT delay 22 20 ns
ts(DI) DIN setup 8 8 ns
th(DI) DIN hold 8 8 ns
tr Rise time 24 12 ns
tf Fall time 24 12 ns
master_tim_los585.gifFigure 1. I2S/LJF/RJF Timing in Master Mode

8.12 I2S/LJF/RJF Timing in Slave Mode (see Figure 2)

IOVDD=1.8V IOVDD=3.3V UNIT
MIN MAX MIN MAX
tH(BCLK) BCLK high period 35 35 ns
tL(BCLK) BCLK low period 35 35
ts(WS) WCLK setup 8 8
th(WS) WCLK hold 8 8
td(DO-WS) WCLK to DOUT delay (For LJF mode only) 20 20
td(DO-BCLK) BCLK to DOUT delay 22 22
ts(DI) DIN setup 8 8
th(DI) DIN hold 8 8
tr Rise time 4 4
tf Fall time 4 4
i2sljfrlf_los585.gifFigure 2. I2S/LJF/RJF Timing in Slave Mode

8.13 DSP Timing in Master Mode (see Figure 3)

All specifications at 25°C, DVdd = 1.8 V
IOVDD=1.8V IOVDD=3.3V UNIT
MIN MAX MIN MAX
td(WS) WCLK delay 30 20 ns
td(DO-BCLK) BCLK to DOUT delay 22 20 ns
ts(DI) DIN setup 8 8 ns
th(DI) DIN hold 8 8 ns
tr Rise time 24 12 ns
tf Fall time 24 12 ns
dsp_tim_los585.gifFigure 3. DSP Timing in Master Mode

8.14 DSP Timing in Slave Mode (see Figure 4)

IOVDD=1.8V IOVDD=3.3V UNIT
MIN MAX MIN MAX
tH(BCLK) BCLK high period 35 35 ns
tL(BCLK) BCLK low period 35 35 ns
ts(WS) WCLK setup 8 8 ns
th(WS) WCLK hold 8 8 ns
td(DO-BCLK) BCLK to DOUT delay 22 22 ns
ts(DI) DIN setup 8 8 ns
th(DI) DIN hold 8 8 ns
tr Rise time 4 4 ns
tf Fall time 4 4 ns
dsp_slave_los585.gifFigure 4. DSP Timing in Slave Mode

8.15 Digital Microphone PDM Timing (see Figure 5)

Based on design simulation. Not tested in actual silicon.
IOVDD = 1.8V IOVDD = 3.3V UNIT
MIN MAX MIN MAX
ts DIN setup 20 20 ns
th DIN hold 5 5 ns
tr Rise time 4 4 ns
tf Fall time 4 4 ns
dig_mic_PDM_time_slos602.gifFigure 5. PDM Input Timing

8.16 I2C Interface Timing

Standard-Mode Fast-Mode UNIT
MIN TYP MAX MIN TYP MAX
fSCL SCL clock frequency 0 100 0 400 kHz
tH(STA) Hold time (repeated) START condition. After this period, the first clock pulse is generated. 4.0 0.8 μs
tLOW LOW period of the SCL clock 4.7 1.3 μs
tHIGH HIGH period of the SCL clock 4.0 0.6 μs
tSU(STA) Setup time for a repeated START condition 4.7 0.8 μs
tH(DAT) Data hold time: For I2C bus devices 0 3.45 0 0.9 μs
tSU(DAT) Data set-up time 250 100 ns
tr SDA and SCL Rise Time 1000 20+0.1Cb 300 ns
tf SDA and SCL Fall Time 300 20+0.1Cb 300 ns
tSU(STO) Set-up time for STOP condition 4.0 0.8 μs
tBUF Bus free time between a STOP and START condition 4.7 1.3 μs
Cb Capacitive load for each bus line 400 400 pF
td_i2c_los585.gifFigure 6. I2C Interface Timing

8.17 SPI Interface Timing

IOVDD=1.8V IOVDD=3.3V UNIT
MIN TYP MAX MIN TYP MAX
tsck SCLK Period 100 50 ns
tsckh SCLK Pulse width High 50 25 ns
tsckl SCLK Pulse width Low 50 25 ns
tlead Enable Lead Time 30 20 ns
tlag Enable Lag Time 30 20 ns
td Sequential Transfer Delay 40 20 ns
ta Slave DOUT access time 40 20 ns
tdis Slave DOUT disable time 40 20 ns
tsu DIN data setup time 15 10 ns
th(DIN) DIN data hold time 15 10 ns
tv(DOUT) DOUT data valid time 25 18 ns
tr SCLK Rise Time 4 4 ns
tf SCLK Fall Time 4 4 ns
if_tim_los585.gif
At 25°C, DVDD = 1.8 V
Figure 7. SPI Interface Timing Diagram

8.18 Typical Characteristics

8.18.1 Typical Performance

s3256_adc_snr_v_ch_gain.gifFigure 8. ADC SNR vs Channel Gain
s3256_thd_v_hp_pwr.gifFigure 10. Total Harmonic Distortion Unipolar Configuration vs Headphone Output Power
s3256_hp_snr_pwr_v_out_cm.gifFigure 12. Headphone SNR and Output Power vs Output Common Mode Setting
s3256_thdn_hp_pwr_out.gifFigure 9. Total Harmonic Distortion GCHP Configuration vs Headphone Output Power
s3256_thd_v_hp_pwr_2.gifFigure 11. Total Harmonic Distortion vs Headphone Output Power

8.18.2 FFT

s3256_fft_se.gifFigure 13. Single Ended Line Input to ADC FFT at -1dBr vs Frequency
s3256_thdn_hp_pwr_out_gc.gifFigure 15. DAC Playback to Headphone FFT at -1dBFS (Ground-Centered Mode) vs Frequency
s3256_fft_line2hp.gifFigure 17. Line Input to Headphone FFT at 446 mVrms (Unipolar Mode) vs Frequency
s3256_fft_dac2hp.gifFigure 14. DAC Playback to Headphone FFT at -1dBFS (Unipolar Mode) vs Frequency
s3256_fft_dac2line_out.gifFigure 16. DAC Playback to Line-Out FFT at -1dBFS to Frequency
s3256_fft_line_in_2_line_out.gifFigure 18. Line Input to Line-Out FFT at 446 mVrms (PGA Mode) vs Frequency