SLUS794F November   2007  – April 2016 UCC28070

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Interleaving
      2. 7.3.2  Programming the PWM Frequency and Maximum Duty-Cycle Clamp
      3. 7.3.3  Frequency Dithering (Magnitude and Rate)
      4. 7.3.4  External Clock Synchronization
      5. 7.3.5  Multi-phase Operation
      6. 7.3.6  VSENSE and VINAC Resistor Configuration
      7. 7.3.7  VSENSE and VINAC Open-Circuit Protection
      8. 7.3.8  Current Synthesizer
      9. 7.3.9  Programmable Peak Current Limit
      10. 7.3.10 Linear Multiplier and Quantized Voltage Feed Forward
      11. 7.3.11 Enhanced Transient Response (VA Slew-Rate Correction)
      12. 7.3.12 Voltage Biasing (VCC and VVREF)
      13. 7.3.13 PFC Enable and Disable
      14. 7.3.14 Adaptive Soft Start
      15. 7.3.15 PFC Start-Up Hold Off
      16. 7.3.16 Output Overvoltage Protection (OVP)
      17. 7.3.17 Zero-Power Detection
      18. 7.3.18 Thermal Shutdown
      19. 7.3.19 Current Loop Compensation
      20. 7.3.20 Voltage Loop Compensation
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Output Current Calculation
        2. 8.2.2.2 Bridge Rectifier
        3. 8.2.2.3 PFC Inductor (L1 and L2)
        4. 8.2.2.4 PFC MOSFETs (M1 and M2)
        5. 8.2.2.5 PFC Diode
        6. 8.2.2.6 PFC Output Capacitor
        7. 8.2.2.7 Current Loop Feedback Configuration (Sizing of the Current Transformer Turns Ratio and Sense Resistor (RS)
        8. 8.2.2.8 Current Sense Offset and PWM Ramp for Improved Noise Immunity
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Supply voltage VCC 22 V
Supply current, IVCC 20 mA
Gate drive current – continuous GDA, GDB ±0.25 A
Gate drive current – pulsed GDA, GDB ±0.75 A
Voltage GDA, GDB –0.5 VCC + 0.3 V
DMAX, RDM, RT, CDR, VINAC, VSENSE, SS, VAO, IMO, CSA, CSB, CAOA, CAOB, PKLMT, VREF –0.5 7
Current RT, DMAX, RDM, RSYNTH –0.5 mA
VREF, VAO, CAOA, CAOB, IMO 10
Lead temperature (10 seconds) 260 °C
Operating junction temperature, TJ –40 125 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) 2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) 500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VCC Input voltage (from a low-impedance source) VCC VUVLO + 1 V 21 V
Load current VREF 2 mA
Input voltage range VINAC 0 3 V
Voltage range IMO 0 3.3 V
VPKLMT Voltage range CSA, CSB 0 3.6 V
RSYN RSYNTH resistance 15 750
RRDM RDM resistance 30 330

6.4 Thermal Information

THERMAL METRIC(1) UCC28070 UNIT
SOIC (DW) TSSOP (PW)
20 PINS 20 PINS
RθJA Junction-to-ambient thermal resistance 78.1 99.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 42.5 34.1 °C/W
RθJB Junction-to-board thermal resistance 46 50.8 °C/W
ψJT Junction-to-top characterization parameter 17.5 1.9 °C/W
ψJB Junction-to-board characterization parameter 45.5 50.3 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

TA = –40°C to 125°C, TJ = TA, VCC = 12 V, GND = 0 V, RRT = 75 kΩ, RDMX = 68.1 kΩ, RRDM = RSYN = 100 kΩ, CCDR = 2.2 nF, CSS = CVREF = 0.1 μF, CVCC = 1 μF, IVREF = 0 mA (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
BIAS SUPPLY
VCC(SHUNT) VCC shunt voltage (1) IVCC = 10 mA 23 25 27 V
IVCC Supply current disabled VVSENSE = 0 V 7 mA
enabled VVSENSE = 3 V (switching) 9 12
UVLO VCC = 7 V 200 µA
VCC = 9 V 4 6 mA
VUVLO UVLO turnon threshold Measured at VCC (rising) 9.8 10.2 10.6 V
UVLO hysteresis Measured at VCC (falling) 1
VREF enable threshold Measured at VCC (rising) 7.5 8 8.5 V
LINEAR REGULATOR
VVREF Reference voltage no load IVREF = 0 mA 5.82 6 6.18 V
load rejection Measured as the change in VVREF
(IVREF = 0 mA and –2 mA)
–12 12 mV
line rejection Measured as the change in VVREF
(VCC = 11 V and 20 V, IVREF = 0 μA)
–12 12
PFC ENABLE
VEN Enable threshold Measured at VSENSE (rising) 0.65 0.75 0.85 V
Enable hysteresis 0.15
EXTERNAL PFC DISABLE
Disable threshold Measured at SS (falling) 0.5 0.6 V
Hysteresis VVSENSE > 0.85 V 0.15 V
OSCILLATOR
Output phase shift Measured between GDA and GDB 179 180 181 °
VDMAX, VRT, and VRDM Timing regulation voltages Measured at DMAX, RT, and RDM 2.91 3 3.09 V
fPWM PWM switching frequency RRT = 75 kΩ, RDMX = 68.1 kΩ,
VRDM = 0 V, VCDR = 6 V
95 100 105 kHz
RRT = 24.9 kΩ, RDMX = 22.6 kΩ,
VRDM = 0 V, VCDR = 6 V
270 290 330
DMAX Duty-cycle clamp RRT = 75 kΩ, RDMX = 68.1 kΩ,
VRDM = 0 V, VCDR = 6 V
92% 95% 98%
Minimum programmable OFF-time RRT = 24.9 kΩ, RDMX = 22.6 kΩ,
VRDM = 0 V, VCDR = 6 V
50 150 250 ns
fDM Frequency dithering magnitude change in fPWM RRDM = 316 kΩ, RRT = 75 kΩ 2 3 4 kHz
RRDM = 31.6 kΩ, RRT = 24.9 kΩ 24 30 36
fDR Frequency dithering rate of change in fPWM CCDR = 2.2 nF, RRDM = 100 kΩ 3 kHz
CCDR = 0.3 nF, RRDM = 100 kΩ 20
ICDR Dither rate current Measured at CDR (sink and source) ±10 μA
Dither disable threshold Measured at CDR (rising) 5 5.25 V
CLOCK SYNCHRONIZATION
VCDR SYNC enable threshold Measured at CDR (rising) 5 5.25 V
SYNC propagation delay VCDR = 6 V, measured from RDM (rising) to GDx (rising) 50 100 ns
SYNC threshold (rising) VCDR = 6 V, measured at RDM 1.2 1.5 V
SYNC threshold (falling) VCDR = 6 V, measured at RDM 0.4 0.7 V
SYNC pulses Positive pulse width 0.2 μs
Maximum duty cycle (2) 50%
VOLTAGE AMPLIFIER
VSENSE voltage In regulation, TA = 25°C 2.97 3 3.03 V
VSENSE voltage In regulation 2.94 3 3.06 V
VSENSE input bias current In regulation 250 500 nA
VAO high voltage VVSENSE = 2.9 V 4.8 5 5.2 V
VAO low voltage VVSENSE = 3.1 V 0.05 0.50 V
gMV VAO transconductance VVSENSE = 2.8 V to 3.2 V, VVAO = 3 V 70 μS
VAO sink current, overdriven limit VVSENSE = 3.5 V, VVAO = 3 V 30 μA
VAO source current, overdriven VVSENSE = 2.5 V, VVAO = 3 V, SS = 3 V –30 μA
VAO source current,
overdriven limit + ISRC
VVSENSE = 2.5 V, VVAO = 3 V –130 μA
Slew-rate correction threshold Measured as VVSENSE (falling) / VVSENSE (regulation) 92% 93% 95%
Slew-rate correction hysteresis Measured at VSENSE (rising) 3 9 mV
ISRC Slew-rate correction current Measured at VAO, in addition to VAO source current –100 μA
Slew-rate correction enable threshold Measured at SS (rising) 4 V
VAO discharge current VVSENSE = 0.5 V, VVAO = 1 V 10 μA
SOFT-START
ISS SS source current VVSENSE = 0.9 V, VSS = 1 V –10 μA
Adaptive source current VVSENSE = 2 V, VSS = 1 V –1.5 –2.5 mA
Adaptive SS disable Measured as VVSENSE – VSS –30 0 30 mV
SS sink current VVSENSE = 0.5 V, VSS = 0.2 V 0.5 0.9 mA
OVERVOLTAGE
VOVP OVP threshold Measured as VVSENSE (rising) / VVSENSE (regulation) 104% 106% 108%
OVP hysteresis Measured at VSENSE (falling) 100 mV
OVP propagation delay Measured between VSENSE (rising) and GDx (falling) 0.2 0.3 μs
ZERO-POWER
VZPWR Zero-power detect threshold Measured at VAO (falling) 0.65 0.75 V
Zero-power hysteresis 0.15 V
MULTIPLIER
kMULT Gain constant VVAO ≥ 1.5 V, TA = 25°C 16 17 18 μA
VVAO = 1.2 V, TA = 25°C 14.5 17 19.5
VVAO ≥ 1.5 V 15 17 19
VVAO = 1.2 V 13 17 21
IIMO Output current: zero VVINAC = 0.9 VPK, VVAO = 0.8 V –0.2 0 0.2 μA
VVINAC = 0 V, VVAO = 5 V –0.2 0 0.2
QUANTIZED VOLTAGE FEED-FORWARD
VLVL1 Level 1 threshold (3) Measured at VINAC (rising) 0.6 0.7 0.8 V
VLVL2 Level 2 threshold 1 V
VLVL3 Level 3 threshold 1.2 V
VLVL4 Level 4 threshold 1.4 V
VLVL5 Level 5 threshold 1.65 V
VLVL6 Level 6 threshold 1.95 V
VLVL7 Level 7 threshold 2.25 V
VLVL8 Level 8 threshold 2.6 V
CURRENT AMPLIFIERS
CAOx high voltage 5.75 6 V
CAOx low voltage 0.1 V
gMC CAOx transconductance 100 μS
CAOx sink current, overdriven 50 μA
CAOx source current, overdriven –50 μA
Input common mode range 0 3.6 V
Input offset voltage VRSYNTH = 6 V, TA = 25°C –4 –8 –13 mV
VRSYNTH = 6 V 0 –8 –20
Input offset voltage 0 –8 –20 mV
Phase mismatch Measured as phase A input offset minus phase B input offset –12 0 12 mV
CAOx pulldown current VVSENSE = 0.5 V, VCAOx = 0.2 V 0.5 0.9 mA
CURRENT SYNTHESIZER
VRSYNTH Regulation voltage VVSENSE = 3 V, VVINAC = 0 V 2.91 3 3.09 V
VVSENSE = 3 V, VVINAC = 2.85 V 0.10 0.15 0.20
Synthesizer disable threshold Measured at RSYNTH (rising) 5 5.25 V
VINAC input bias current 0.250 0.500 μA
PEAK CURRENT LIMIT
Peak current limit threshold VPKLMT = 3.30 V, measured at CSx (rising) 3.27 3.3 3.33 V
Peak current limit propagation delay Measured between CSx (rising) and GDx (falling) edges 60 100 ns
PWM RAMP
VRMP PWM ramp amplitude 3.8 4 4.2 V
PWM ramp offset voltage TA = 25°C, RRT = 75 kΩ 0.65 0.7 V
PWM ramp offset temperature coefficient –2 mV/°C
GATE DRIVE
GDA, GDB output voltage, high, clamped VCC = 20 V, CLOAD = 1 nF 11.5 13 15 V
GDA, GDB output voltage, high CLOAD = 1 nF 10 10.5 V
GDA, GDB output voltage, low CLOAD = 1 nF 0.2 0.3 V
Rise time GDx 1 V to 9 V, CLOAD = 1 nF 18 30 ns
Fall time GDx 9 V to 1 V, CLOAD = 1 nF 12 25 ns
GDA, GDB output voltage, UVLO VCC = 0 V, IGDA, IGDB = 2.5 mA 0.7 2 V
(1) Excessive VCC input voltage or current damages the device. This clamp does not protect the device from an unregulated supply. If an unregulated supply is used, TI recommends a series-connected fixed positive voltage regulator such as a UA78L15A. See Absolute Maximum Ratings for the limits on VCC voltage and current.
(2) Due to the influence of the synchronization pulse width on the programmability of the maximum PWM switching duty cycle (DMAX), TI recommends minimizing the synchronization signal duty cycle.
(3) The Level 1 threshold represents the zero-crossing detection threshold above which VVINAC must rise to initiate a new input half-cycle, and below which VVINAC must fall to terminate that half-cycle.

6.6 Typical Characteristics

UCC28070 wav1_lus794.gif
Figure 1. VCC Supply Current vs Junction Temperature
UCC28070 wav3_lus794.gif Figure 3. VVSENSE Regulation vs Junction Temperature
UCC28070 wav5_lus794.gif Figure 5. IMO, Multiplier Output Current vs VVAO
UCC28070 wav7_lus794.gif Figure 7. IVINAC Bias Current vs Junction Temperature
UCC28070 wav9_lus794.gif Figure 9. VAO, Voltage Amplifier Transconductance vs Junction Temperature
UCC28070 wav11_lus794.gif
Figure 11. Current Amplifier Transconductance vs Junction Temperature
UCC28070 wav13_lus794.gif
0.8-V Common Mode
Figure 13. CA1 to CA2 Relative Offset vs Junction Temperature
UCC28070 wav15_lus794.gif
2-V Common Mode
Figure 15. CA1 to CA2 Relative Offset vs Junction Temperature
UCC28070 wav17_lus794.gif
3.6-V Common Mode
Figure 17. CA1 to CA2 Relative Offset vs Junction Temperature
UCC28070 wav2_lus794.gif
VVREF = 0 mA
Figure 2. VVREF vs Junction Temperature
UCC28070 wav4_lus794.gif Figure 4. IVSENSE Bias Current vs Junction Temperature
UCC28070 wav6_lus794.gif Figure 6. Multiplier Constant vs Junction Temperature
UCC28070 wav8_lus794.gif Figure 8. Normalized Switching Frequency vs Junction Temperature
UCC28070 wav10_lus794.gif Figure 10. Voltage Amplifier Transfer Function vs VVSENSE
UCC28070 wav12_lus794.gif
0.8-V Common Mode
Figure 12. CAx Input Offset Voltage vs Junction Temperature
UCC28070 wav14_lus794.gif
2-V Common Mode
Figure 14. CAx Input Offset Voltage vs Junction Temperature
UCC28070 wav16_lus794.gif
3.6-V Common Mode
Figure 16. CAx Input Offset Voltage vs Junction Temperature