SLUSAM9E July   2011  – April 2020

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
  4. Revision History
  5. Description (Continued)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics: Supply Current
    6. 7.6  Internal Power Control (Startup and Shutdown)
    7. 7.7  3.3-V Voltage Regulator
    8. 7.8  Voltage Reference
    9. 7.9  Cell Voltage Amplifier
    10. 7.10 Current Sense Amplifier
    11. 7.11 Overcurrent Comparator
    12. 7.12 Internal Temperature Measurement
    13. 7.13 Cell Balancing and Open Cell Detection
    14. 7.14 I2C Compatible Interface
    15. 7.15 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Internal LDO Voltage Regulator
      2. 8.3.2 ADC Interface
        1. 8.3.2.1 Reference Voltage
          1. 8.3.2.1.1 Host ADC Calibration
        2. 8.3.2.2 Cell Voltage Monitoring
          1. 8.3.2.2.1 Cell Amplifier Headroom Under Extreme Cell Imbalance
          2. 8.3.2.2.2 Cell Amplifier Headroom Under BAT Voltage Drop
        3. 8.3.2.3 Current Monitoring
        4. 8.3.2.4 Overcurrent Monitoring
        5. 8.3.2.5 Temperature Monitoring
          1. 8.3.2.5.1 Internal Temperature Monitoring
      3. 8.3.3 Cell Balancing and Open Cell Detection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power Modes
        1. 8.4.1.1 POWER ON RESET (POR)
        2. 8.4.1.2 STANDBY
        3. 8.4.1.3 SLEEP
    5. 8.5 Programming
      1. 8.5.1 Host Interface
        1. 8.5.1.1 I2C Addressing
        2. 8.5.1.2 Bus Write Command to BQ76925
        3. 8.5.1.3 Bus Read Command from BQ76925 Device
    6. 8.6 Register Maps
      1. 8.6.1 Register Descriptions
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Recommended System Implementation
        1. 9.1.1.1 Voltage, Current, and Temperature Outputs
        2. 9.1.1.2 Power Management
        3. 9.1.1.3 Low Dropout (LDO) Regulator
        4. 9.1.1.4 Input Filters
        5. 9.1.1.5 Output Filters
      2. 9.1.2 Cell Balancing
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

POWER ON RESET (POR)

When initially powering up the BQ76925 device, the voltage on the BAT pin must exceed VPOR (4.7-V maximum) before the device will turn on. Following this, the device will remain operational as long as the voltage on BAT remains above VSHUT (3.6-V maximum). If the BAT voltage falls below VSHUT, the device will shut down. Recovery from shutdown occurs when BAT rises back above the VPOR threshold and is equivalent to a POR. The VPOR threshold following a shutdown depends on the minimum level reached by BAT after crossing below VSHUT. If BAT does not fall below approximately 1.4 V, a higher VPOR (7.5-V maximum) applies. This is illustrated in Figure 12.

BQ76925 pwr_on_state_lusam9.gifFigure 12. Power On State vs VBAT

Following a power on reset, all volatile registers assume their default state. Therefore, care must be taken that transients on the BAT pin during normal operation do not fall below VSHUT. To avoid this condition in systems subject to extreme transients or brown-outs, a hold-up circuit such as the one shown in the functional diagram is recommended. When using a hold-up circuit, care must be taken to observe the BAT to VC6 maximum ratings.