SLUUCF2C January 2021 – May 2022 BQ769142
SHUTDOWN mode is the lowest power mode of the BQ769142, which can be used for shipping or long-term storage. In this mode, the device loses all register state information, the internal logic is powered down, and all protection FETs are disabled, so no voltage is provided at the battery pack terminals. All protections are disabled, all voltage, current, and temperature measurements are disabled, and no communications are supported. When the device exits SHUTDOWN, it will boot and read parameters stored in OTP (if that has been written). If the OTP has not been written, the device will power up with default settings, and then settings can be changed by the host writing device registers.
Entering SHUTDOWN mode involves a sequence of steps. The sequence can be initiated manually by sending the 0x0010 SHUTDOWN() subcommand twice in a row within a 4-s time window if the device is SEALED. If this subcommand is sent twice in a row while the device is UNSEALED, the delays associated with the sequence are skipped. The device can also be configured to enter SHUTDOWN mode automatically based on the top of stack voltage or the minimum cell voltage. If the top-of-stack voltage falls below Power:Shutdown:Shutdown Stack Voltage or if the minimum cell voltage falls below Power:Shutdown:Shutdown Cell Voltage, the SHUTDOWN mode sequence is automatically initiated. The shutdown based on cell voltage does not apply to cell input pins being used to measure interconnect, based on settings in Settings:Configuration:Vcell mode.
While the BQ769142 device is in NORMAL or SLEEP mode, the device can also be configured to enter SHUTDOWN mode if the internal temperature measurement exceeds Power:Shutdown:Shutdown Temperature for Power:Shutdown:Shutdown Temperature Delay seconds.
When the SHUTDOWN mode sequence has been initiated by the 0x0010 SHUTDOWN() subcommand or the RST_SHUT pin driven high for 1 s, the device will wait for Power:Shutdown:FET Off Delay then disable the protection FETs. After a delay of Power:Shutdown:Shutdown Command Delay from when the sequence begins, the device will enter SHUTDOWN mode (so Power:Shutdown:Shutdown Command Delay should be set longer than Power:Shutdown:FET Off Delay). However, if the voltage on the LD pin is still above the VWAKEONLD level, shutdown will be delayed until the voltage on LD falls below that level.
While the device is in SHUTDOWN mode, a ≈5 V level is provided at the TS2 pin with high source impedance. If the TS2 pin is pulled below VWAKEONTS2, such as by a switch to VSS, or if a voltage is applied at the LD pin above VWAKEONLD (such as when a charger is attached in series FET configuration), the device will exit SHUTDOWN mode. Note: If a thermistor is attached from the TS2 pin to VSS, this will prevent the device from ever fully entering SHUTDOWN mode.
To avoid an unintentional wake from SHUTDOWN mode when putting the BQ769142 device into long-term storage, the device can be configured to automatically reenter SHUTDOWN mode after Power:Shutdown:Auto Shutdown Time minutes if the device boots from SHUTDOWN mode without any valid communications occurring or any charge or discharge current is detected. This feature is disabled by default, so it is necessary to program it enabled in OTP to ensure it is enabled when an unintentional wake occurs. It also does not take effect after a watchdog reset has occurred. See Power:Shutdown:Auto Shutdown Time for more details.
The BQ769142 device performs periodic memory integrity checks and forces a watchdog reset if any corruption is detected. To avoid a cycle of resets in the case of a memory fault, the device enters SHUTDOWN mode rather than resetting if a memory error is detected within Power:Shutdown:RAM Fail Shutdown Time seconds after a watchdog reset occurred.
When the device is wakened from SHUTDOWN, it requires approximately 200-300 ms (if Settings:Permanent Failure:Enabled PF A[CUDEP] is not enabled) for the internal circuitry to power up, load settings from OTP memory, perform initial measurements, evaluate those relative to enabled protections, then to enable FETs if conditions allow. This can be much longer if [CUDEP] is enabled, depending on its associated delay setting in Permanent Fail:CUDEP:Delay.
The BQ769142 device integrates a hardware overtemperature detection circuit, which determines when the die temperature passes an excessive temperature of approximately 120°C. If this detector triggers, the device will automatically begin the sequence to enter SHUTDOWN if the Settings:Configuration:Power Config[OTSD] configuration bit is set.
If the shutdown sequence was initiated, but the TS2 pin is held below VWAKEONTS2 or the voltage at the LD pin is above VWAKEONLD, then the device will stay in a "soft shutdown" state until the TS2 pin voltage is no longer below VWAKEONTS2, and the LD pin voltage is below VWAKEONLD. While in "soft shutdown," FETs are disabled, protections and measurements are stopped, and serial communication is disabled. The device exits "soft shutdown" if the LD voltage is allowed to first fall below VWAKEONLD, then is raised above VWAKEONLD by a charger being attached, or if the RST_SHUT pin is transitioned from low to high or the conditions enable the device to continue into SHUTDOWN mode. VWAKEONLD and VWAKEONTS2 are specified in BQ769142 3-Series to 14-Series High Accuracy Battery Monitor and Protector for Li-Ion, Li-Polymer, and LiFePO4 Battery Packs (SLUSE91).