SLVSBD0B November   2012  – June 2020

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Application as USB Power Switch
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Overcurrent Conditions
      2. 8.3.2 Reverse-Voltage Protection
      3. 8.3.3 FAULT Response
      4. 8.3.4 Undervoltage Lockout (UVLO)
      5. 8.3.5 Enable (EN)
      6. 8.3.6 Thermal Sense
    4. 8.4 Device Functional Modes
    5. 8.5 Programming
      1. 8.5.1 Programming the Current-Limit Threshold
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Constant-Current and Impact on Output Voltage
      2. 9.1.2 Accounting for Resistor Tolerance
      3. 9.1.3 Input and Output Capacitance
    2. 9.2 Typical Applications
      1. 9.2.1 Application 1: Designing Above a Minimum Current-Limit
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Application 2: Designing Below a Maximum Current-Limit
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
      3. 9.2.3 Application 3: Auto-Retry Functionality
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
      4. 9.2.4 Application 4: Two-Level Current-Limit Circuit
        1. 9.2.4.1 Design Requirements
        2. 9.2.4.2 Detailed Design Procedure
      5. 9.2.5 Application 5: Typical Application as USB Power Switch
        1. 9.2.5.1 Design Requirements
        2. 9.2.5.2 Detailed Design Procedure
          1. 9.2.5.2.1 Universal Serial Bus (USB) Power-Distribution Requirements
  10. 10Power Supply Recommendations
    1. 10.1 USB Self-Powered (SPH) and Bus-Powered (BPH) Hubs
    2. 10.2 USB Low-Power Bus-Powered and High-Power Bus-Powered Functions
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Power Dissipation and Junction Temperature
  12. 12Device and Documentation Support
    1. 12.1 Device Support
    2. 12.2 Support Resource
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Power Dissipation and Junction Temperature

The low on-resistance of the N-channel MOSFET allows small surface-mount packages to pass large currents. It is good design practice to estimate power dissipation and junction temperature. The below analysis gives an approximation for calculating junction temperature based on the power dissipation in the package. However, it is important to note that thermal analysis is strongly dependent on additional system level factors. Such factors include air flow, board layout, copper thickness and surface area, and proximity to other devices dissipating power. Good thermal design practice must include all system level factors in addition to individual component analysis.

Begin by determining the rDS(on) of the N-channel MOSFET relative to the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read rDS(on) from the typical characteristics graph. Using this value, the power dissipation can be calculated by:

Equation 6. PD = rDS(on) × IOUT2

where

  • PD = Total power dissipation (W)
  • rDS(on) = Power switch on-resistance (Ω)
  • IOUT = Maximum current-limit threshold (A)

This step calculates the total power dissipation of the N-channel MOSFET.

Finally, calculate the junction temperature:

Equation 7. TJ = PD × θJA + TA

where

  • TA = Ambient temperature (°C)
  • θJA = Thermal resistance (°C/W)
  • PD = Total power dissipation (W)

Compare the calculated junction temperature with the initial estimate. If they are not within a few degrees, repeat the calculation using the "refined" rDS(on) from the previous calculation as the new estimate. Two or three iterations are generally sufficient to achieve the desired result. The final junction temperature is highly dependent on thermal resistance θJA, and thermal resistance is highly dependent on the individual package and board layout. The Thermal Information provides example thermal resistance for specific packages and board layouts.