SLYA036B July   2018  – November 2021 DRV5053 , DRV5053-Q1 , DRV5055 , DRV5055-Q1 , DRV5056 , DRV5056-Q1 , DRV5057 , DRV5057-Q1

 

  1.   Trademarks
  2. 1Introduction
  3. 2Overview
    1. 2.1 Types of Magnetization
    2. 2.2 Types of Magnets
  4. 3Device Descriptions
    1. 3.1 2.5-V to 38-V, Bipolar Hall Effect Sensor Family: DRV5053 and DRV5053-Q1
    2. 3.2 High-Accuracy, 3.3-V or 5-V, Ratiometric, Bipolar Hall Effect Sensor Family: DRV5055 and DRV5055-Q1
    3. 3.3 High-Accuracy, 3.3-V or 5-V, Ratiometric, Unipolar Hall Effect Sensor Family: DRV5056 and DRV5056-Q1
  5. 4Methods
    1. 4.1 Uncalibrated Implementations
      1. 4.1.1 Overview
        1. 4.1.1.1 General Implementation
        2. 4.1.1.2 Preferred Magnet Types
        3. 4.1.1.3 General Accuracy and Resolution
        4. 4.1.1.4 Considerations
      2. 4.1.2 One Bipolar Sensor, Uncalibrated
        1. 4.1.2.1 Specific Implementation
        2. 4.1.2.2 Calculating Region
        3. 4.1.2.3 Accuracy
      3. 4.1.3 Two Bipolar Sensors 90° Apart, Uncalibrated
        1. 4.1.3.1 Specific Implementation
        2. 4.1.3.2 Calculating Region
        3. 4.1.3.3 Accuracy
      4. 4.1.4 Two Bipolar Sensors n° Apart, Uncalibrated
        1. 4.1.4.1 Specific Implementation
        2. 4.1.4.2 Calculating Region
        3. 4.1.4.3 Accuracy
      5. 4.1.5 Three or More Bipolar Sensors, Uncalibrated
        1. 4.1.5.1 Specific Implementation
        2. 4.1.5.2 Calculating Region
        3. 4.1.5.3 Accuracy
    2. 4.2 Peak Calibrated Implementations
      1. 4.2.1 Overview
        1. 4.2.1.1 General Implementation
        2. 4.2.1.2 Preferred Magnet Types
        3. 4.2.1.3 General Accuracy and Resolution
        4. 4.2.1.4 Considerations
      2. 4.2.2 One Bipolar Sensor, Peak Calibrated
        1. 4.2.2.1 Specific Implementation
        2. 4.2.2.2 Calculating Angle
        3. 4.2.2.3 Accuracy
      3. 4.2.3 Two Bipolar Sensors 90° Apart, Peak Calibrated
        1. 4.2.3.1 Specific Implementation
        2. 4.2.3.2 Calculating Angle
        3. 4.2.3.3 Accuracy
    3. 4.3 Lookup Table Calibration Implementations
      1. 4.3.1 Overview
        1. 4.3.1.1 General Implementation
        2. 4.3.1.2 Preferred Magnet Types
        3. 4.3.1.3 General Accuracy and Resolution
        4. 4.3.1.4 Considerations
      2. 4.3.2 One Bipolar Sensor, Lookup Table Calibrated
        1. 4.3.2.1 Specific Implementation
        2. 4.3.2.2 Calculating Angle
        3. 4.3.2.3 Accuracy
      3. 4.3.3 Two Bipolar Sensors ≈ 90° Apart, Lookup Table Calibrated
        1. 4.3.3.1 Specific Implementation
        2. 4.3.3.2 Calculating Angle
        3. 4.3.3.3 Accuracy
    4. 4.4 Peak Calibrated Plus Lookup Table Hybrid
      1. 4.4.1 Overview
        1. 4.4.1.1 General Implementation
        2. 4.4.1.2 Preferred Magnet Types
        3. 4.4.1.3 General Accuracy and Resolution
        4. 4.4.1.4 Considerations
      2. 4.4.2 One Bipolar Sensor, Hybrid Calibrated
        1. 4.4.2.1 Specific implementation
        2. 4.4.2.2 Calculating Angle
        3. 4.4.2.3 Accuracy
      3. 4.4.3 Two Bipolar Sensors 90° Apart, Hybrid Calibrated (Recommended High Accuracy Method)
        1. 4.4.3.1 Specific Implementation
        2. 4.4.3.2 Calculating Angle
        3. 4.4.3.3 Accuracy
  6. 5References
  7. 6Revision History

High-Accuracy, 3.3-V or 5-V, Ratiometric, Bipolar Hall Effect Sensor Family: DRV5055 and DRV5055-Q1

The DRV5055 is a linear Hall effect sensor that responds proportionally to magnetic flux density. This device can be used for accurate position sensing in a wide range of applications.

The device operates from 3.3-V or 5-V power supplies. When no magnetic field is present, the analog output drives half of VCC. The output changes linearly with the applied magnetic flux density, and four sensitivity options enable maximal output voltage swing based on the required sensing range. North and south magnetic poles produce unique voltages.

Magnetic flux perpendicular to the top of the package is sensed, and the two package options provide different sensing directions.

The device uses a ratiometric architecture that can eliminate error from VCC tolerance when the external analog-to-digital converter (ADC) uses the same VCC as a reference. Additionally, the device features magnet temperature compensation to counteract magnet drift for linear performance across a wide –40°C to +125°C temperature range.

The DRV5055-Q1 is the automotive-grade version of the DRV5055.