SLYA042 July   2024 FDC1004 , FDC1004-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. Introduction
  5. CSAs and Input Bias Stage
  6. CSA and Gain Error Factor
  7. Applications for Resistance at Input Pins of Current Sense Amplifiers
    1. 4.1 Input Resistance Design Considerations
  8. Applications for Input Resistance at Reference Pins of Current Sense Amplifiers
    1. 5.1 Bidirectional CSA and Applications
    2. 5.2 Driving CSA Reference Pin With High-Resistance Source Voltage
    3. 5.3 Input Resistance at Reference Pin Design Considerations
  9. Design Procedure and Error Calculation for External Input Resistance on CSA
    1. 6.1 Calculating eEXT for INA185A4 With 110Ω Input Resistors
  10. Design Procedure for Input Resistance on Capacitively-Coupled Current Sense Amplifier
    1. 7.1 Bench Verification of Input eEXT for Capacitively-Coupled Current Sense Amplifiers
  11. Design Procedure for Input Resistance at CSA Reference Pins
  12. Input Resistance Error Test with INA185 Over Temperature
    1. 9.1 Schematic
    2. 9.2 Methods
    3. 9.3 Theoretical Model
    4. 9.4 Data for INA185A4 with 110Ω Input Resistors
      1. 9.4.1 Data Calculations
    5. 9.5 Analysis
  13. 10Input Resistance Error Test with INA191 Over Temperature
    1. 10.1 Schematic
    2. 10.2 Methods
    3. 10.3 Theoretical Model
    4. 10.4 Data for INA191A4 With 2.2kΩ Input Resistors
      1. 10.4.1 Data Analysis
    5. 10.5 Analysis
  14. 11Derivation of VOS, EXT for a Single Stage Current Sense Amplifier (CSA)
  15. 12Summary
  16. 13References

Analysis

The determined data nicely follow the predictive model and thus easily fall within maximum possible error, which is unlikely to measure.

One notable difference between measurements and predictions occur at -40°C as seen with gain errors in Table 9-12 and Table 9-14. This can mostly be because the model's parameters assumed linear temperature coefficients; however, REXT can easily have non-linear, even parabolic, temperature coefficients that changed polarity going cold. Best efforts was made to get lowest prediction errors and future efforts can employ non-linear temperature coefficients. Tradeoffs were made so that prediction model at least matched the 125°C range.

The other high prediction error occurred with the VOS, EXT at VCM=0-V in Table 9-17. This can be a result of the change in IB, CM slope when VCM < VS, which can be seen in Figure 2-2. If accurate leakage input bias current is required at this level please post an inquiry on our public forum for more information.