SNOA951 June   2016 LDC1312 , LDC1312-Q1 , LDC1314 , LDC1314-Q1 , LDC1612 , LDC1612-Q1 , LDC1614 , LDC1614-Q1

 

  1.   Inductive Sensing Touch-On-Metal Buttons Design Guide
    1.     Trademarks
    2. 1 ToM Basics
    3. 2 How Are Inductive Touch-On-Metal Buttons Implemented?
    4. 3 System Design Procedure
      1. 3.1 Mechanical System Design
        1. 3.1.1 Designing for Natural Button Force
          1. 3.1.1.1 Metal Composition
          2. 3.1.1.2 Metal Thickness
          3. 3.1.1.3 Mechanical Structure of the Button
        2. 3.1.2 Target Distance
        3. 3.1.3 Mechanical Isolation
        4. 3.1.4 Mounting Techniques
      2. 3.2 Sensor Design
        1. 3.2.1 PCB Design
        2. 3.2.2 Sensor Frequency Selection
        3. 3.2.3 Sensor Amplitude Selection
      3. 3.3 Other Considerations
        1. 3.3.1 Button Quantity and Multiplexing
        2. 3.3.2 Power Consumption
        3. 3.3.3 Software Algorithm
        4. 3.3.4 EMI Emissions Testing
      4. 3.4 Design Implementation
    5. 4 Results
    6. 5 Summary
    7. 6 Additional resources

Button Quantity and Multiplexing

The dual-channel LDC1612 supports two buttons. With the quad-channel LDC1614, four-button systems can be implemented. For systems with more than four buttons, multiplexing may be utilized with a single LDC1614. Table 2 shows the recommended device for the required amount of buttons

Table 2. Button Quantity vs Device Selection

Number of Buttons Recommended Device
1-2 LDC1612
3-4 LDC1614
5+ LDC1614 + external multiplexing