SNOA951 June   2016 LDC1312 , LDC1312-Q1 , LDC1314 , LDC1314-Q1 , LDC1612 , LDC1612-Q1 , LDC1614 , LDC1614-Q1

 

  1.   Inductive Sensing Touch-On-Metal Buttons Design Guide
    1.     Trademarks
    2. 1 ToM Basics
    3. 2 How Are Inductive Touch-On-Metal Buttons Implemented?
    4. 3 System Design Procedure
      1. 3.1 Mechanical System Design
        1. 3.1.1 Designing for Natural Button Force
          1. 3.1.1.1 Metal Composition
          2. 3.1.1.2 Metal Thickness
          3. 3.1.1.3 Mechanical Structure of the Button
        2. 3.1.2 Target Distance
        3. 3.1.3 Mechanical Isolation
        4. 3.1.4 Mounting Techniques
      2. 3.2 Sensor Design
        1. 3.2.1 PCB Design
        2. 3.2.2 Sensor Frequency Selection
        3. 3.2.3 Sensor Amplitude Selection
      3. 3.3 Other Considerations
        1. 3.3.1 Button Quantity and Multiplexing
        2. 3.3.2 Power Consumption
        3. 3.3.3 Software Algorithm
        4. 3.3.4 EMI Emissions Testing
      4. 3.4 Design Implementation
    5. 4 Results
    6. 5 Summary
    7. 6 Additional resources

System Design Procedure

In order to construct a ToM system with the optimal performance, the following should be considered:

  1. Mechanical system design:  The quantity, size, and arrangement of buttons as well as the optimal target-to-sensor spacing can influence the response of the system.
  2. Sensor design: Best practices to LDC sensor design and shape to ensure that the LDC can detect microscopic deflection in metal.
  3. Other considerations: Multiplexing multiple buttons, power consumption, detection algorithms to automatically adjust for long-term drift or permanent mechanical changes, and EMI.