SNVS871M July   2012  – June 2020

PRODUCTION DATA.  

  1. Features
  2. Applications
    1.     Simplified Schematic
  3. Description
  4. Revision History
  5. Device Options
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Electrical Characteristics — Boost Converter
    7. 7.7  Electrical Characteristics — LED Driver
    8. 7.8  Electrical Characteristics — PWM Interface
    9. 7.9  Electrical Characteristics — Logic Interface
    10. 7.10 I2C Serial Bus Timing Parameters (SDA, SCL)
    11. 7.11 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Boost Converter
        1. 8.3.1.1 Boost Converter Operation
        2. 8.3.1.2 Setting Boost Switching Frequency
        3. 8.3.1.3 Output Voltage Control
          1. 8.3.1.3.1 Adaptive Control
          2. 8.3.1.3.2 Manual Control
        4. 8.3.1.4 EMI Reduction
      2. 8.3.2 Brightness Control
        1. 8.3.2.1  BRT_MODE = 00
        2. 8.3.2.2  BRT_MODE = 01
        3. 8.3.2.3  BRT_MODE = 10
        4. 8.3.2.4  BRT_MODE = 11
        5. 8.3.2.5  Output Dimming Schemes
          1. 8.3.2.5.1 PWM Control
          2. 8.3.2.5.2 Pure Current Control
          3. 8.3.2.5.3 Adaptive Control
        6. 8.3.2.6  Setting Full-Scale LED Current
        7. 8.3.2.7  Setting PWM Dimming Frequency
        8. 8.3.2.8  Phase Shift PWM Scheme
        9. 8.3.2.9  Slope and Advanced Slope
        10. 8.3.2.10 Dithering
      3. 8.3.3 Fault Detection
        1. 8.3.3.1 LED Fault Detection
          1. 8.3.3.1.1 Open Detect
          2. 8.3.3.1.2 Short Detect
        2. 8.3.3.2 Undervoltage Detection
        3. 8.3.3.3 Overcurrent Protection
        4. 8.3.3.4 Thermal Shutdown
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Active Mode
    5. 8.5 Programming
      1. 8.5.1 I2C-Compatible Serial Bus Interface
        1. 8.5.1.1 Interface Bus Overview
        2. 8.5.1.2 Data Transactions
        3. 8.5.1.3 Acknowledge Cycle
        4. 8.5.1.4 Acknowledge After Every Byte Rule
        5. 8.5.1.5 Addressing Transfer Formats
        6. 8.5.1.6 Control Register Write Cycle
        7. 8.5.1.7 Control Register Read Cycle
        8. 8.5.1.8 Register Read and Write Detail
    6. 8.6 Register Maps
      1. 8.6.1 Register Bit Explanations
        1. 8.6.1.1 Brightness Control
        2. 8.6.1.2 Device Control
        3. 8.6.1.3 Status
        4. 8.6.1.4 Direct Control
        5. 8.6.1.5 LED String Enable
      2. 8.6.2 EPROM Bit Explanations
        1. 8.6.2.1  LP8556TM (DSBGA) Configurations and Pre-Configured EPROM Settings
        2. 8.6.2.2  LP8556TM (DSBGA) Configurations and Pre-configured EPROM Settings Continued
        3. 8.6.2.3  LP8556SQ (WQFN) Configurations and Pre-configured EPROM Settings
        4. 8.6.2.4  CFG98
        5. 8.6.2.5  CFG9E
        6. 8.6.2.6  CFG0
        7. 8.6.2.7  CFG1
        8. 8.6.2.8  CFG2
        9. 8.6.2.9  CFG3
        10. 8.6.2.10 CFG4
        11. 8.6.2.11 CFG5
        12. 8.6.2.12 CFG6
        13. 8.6.2.13 CFG7
        14. 8.6.2.14 CFG9
        15. 8.6.2.15 CFGA
        16. 8.6.2.16 CFGE
        17. 8.6.2.17 CFGF
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Using LP8556 With I2C Host
        1. 9.1.1.1 Setting Boost Switching and PWM Dimming Frequencies
        2. 9.1.1.2 Setting Full-Scale LED Current
      2. 9.1.2 Using LP8556 With Configuration Resistors and IO Pins
        1. 9.1.2.1 Setting Boost Switching and PWM Dimming Frequencies
        2. 9.1.2.2 Setting Full-Scale LED Current
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Recommended Inductance for the Boost Power Stage
        2. 9.2.2.2 Recommended Capacitances for the Boost and LDO Power Stages
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Examples
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Layout Guidelines

Figure 28 and Figure 29 follow proper layout guidelines and should be used as a guide for laying out the LP8556 circuit.

The LP8556 inductive boost converter has a high switched voltage at the SW pin, and a step current through the Schottky diode and output capacitor each switching cycle. The high switching voltage can create interference into nearby nodes due to electric field coupling (I = C × dV/dt). The large step current through the diode and the output capacitor can cause a large voltage spike at the SW and VBOOST pins due to parasitic inductance in the step current conducting path (V = L × di/dt). Board layout guidelines are geared towards minimizing this electric field coupling and conducted noise.

The following list details the main (layout sensitive) areas of the device inductive boost converter in order of decreasing importance:

  1. Boost Output Capacitor Placement
    • Because the output capacitor is in the path of the inductor current discharge path, there is a high-current step from 0 to IPEAK each time the switch turns off and the Schottky diode turns on. Any inductance along this series path from the diodes cathode, through COUT, and back into the LP8556 GND pin contributes to voltage spikes (VSPIKE = LP_ × dI/dt) at SW and OUT. These spikes can potentially over-voltage the SW and VBOOST pins, or feed through to GND. To avoid this, COUT+ must be connected as close to the cathode of the Schottky diode as possible, and COUT− must be connected as close to the LP8556 GND bumps as possible. The best placement for COUT is on the same layer as the LP8556 to avoid any vias that can add excessive series inductance.
  2. Schottky Diode Placement
    • In the device boost circuit the Schottky diode is in the path of the inductor current discharge. As a result the Schottky diode has a high-current step from 0 to IPEAK each time the switch turns off and the diode turns on. Any inductance in series with the diode causes a voltage spike (VSPIKE = LP_ × dI/dt) at SW and OUT. This can potentially over-voltage the SW pin, or feed through to VOUT and through the output capacitor, into GND. Connecting the anode of the diode as close to the SW pin as possible, and connecting the cathode of the diode as close to COUT+ as possible reduces the inductance (LP_) and minimize these voltage spikes.
  3. Boost Input/VDD Capacitor Placement
    • The LP8556 input capacitor filters the inductor current ripple and the internal MOSFET driver currents. The inductor current ripple can add input voltage ripple due to any series resistance in the input power path. The MOSFET driver currents can add voltage spikes on the input due to the inductance in series with the VIN/VDD and the input capacitor. Close placement of the input capacitor to the VDD pin and to the GND pin is critical because any series inductance between VIN/VDD and CIN+ or CIN– and GND can create voltage spikes that could appear on the VIN/VDD supply line and GND.
    • Close placement of the input capacitor at the input side of the inductor is also critical. The source impedance (inductance and resistance) from the input supply, along with the input capacitor of the LP8556, forms a series RLC circuit. If the output resistance from the source is low enough, the circuit is underdamped and will have a resonant frequency (typically the case).
    • Depending on the size of LS, the resonant frequency could occur below, close to, or above the switching frequency of the LP8556. This can cause the supply current ripple to be:
      • Approximately equal to the inductor current ripple when the resonant frequency occurs well above the LP8556 switching frequency.
      • Greater than the inductor current ripple when the resonant frequency occurs near the switching frequency.
      • Less than the inductor current ripple when the resonant frequency occurs well below the switching frequency.