SPMA086 October   2022 TM4C1230C3PM , TM4C1230C3PM , TM4C1230D5PM , TM4C1230D5PM , TM4C1230E6PM , TM4C1230E6PM , TM4C1230H6PM , TM4C1230H6PM , TM4C1231C3PM , TM4C1231C3PM , TM4C1231D5PM , TM4C1231D5PM , TM4C1231D5PZ , TM4C1231D5PZ , TM4C1231E6PM , TM4C1231E6PM , TM4C1231E6PZ , TM4C1231E6PZ , TM4C1231H6PGE , TM4C1231H6PGE , TM4C1231H6PM , TM4C1231H6PM , TM4C1231H6PZ , TM4C1231H6PZ , TM4C1232C3PM , TM4C1232C3PM , TM4C1232D5PM , TM4C1232D5PM , TM4C1232E6PM , TM4C1232E6PM , TM4C1232H6PM , TM4C1232H6PM , TM4C1233C3PM , TM4C1233C3PM , TM4C1233D5PM , TM4C1233D5PM , TM4C1233D5PZ , TM4C1233D5PZ , TM4C1233E6PM , TM4C1233E6PM , TM4C1233E6PZ , TM4C1233E6PZ , TM4C1233H6PGE , TM4C1233H6PGE , TM4C1233H6PM , TM4C1233H6PM , TM4C1233H6PZ , TM4C1233H6PZ , TM4C1236D5PM , TM4C1236D5PM , TM4C1236E6PM , TM4C1236E6PM , TM4C1236H6PM , TM4C1236H6PM , TM4C1237D5PM , TM4C1237D5PM , TM4C1237D5PZ , TM4C1237D5PZ , TM4C1237E6PM , TM4C1237E6PM , TM4C1237E6PZ , TM4C1237E6PZ , TM4C1237H6PGE , TM4C1237H6PGE , TM4C1237H6PM , TM4C1237H6PM , TM4C1237H6PZ , TM4C1237H6PZ , TM4C123AE6PM , TM4C123AE6PM , TM4C123AH6PM , TM4C123AH6PM , TM4C123BE6PM , TM4C123BE6PM , TM4C123BE6PZ , TM4C123BE6PZ , TM4C123BH6PGE , TM4C123BH6PGE , TM4C123BH6PM , TM4C123BH6PM , TM4C123BH6PZ , TM4C123BH6PZ , TM4C123BH6ZRB , TM4C123BH6ZRB , TM4C123FE6PM , TM4C123FE6PM , TM4C123FH6PM , TM4C123FH6PM , TM4C123GE6PM , TM4C123GE6PM , TM4C123GE6PZ , TM4C123GE6PZ , TM4C123GH6PGE , TM4C123GH6PGE , TM4C123GH6PM , TM4C123GH6PM , TM4C123GH6PZ , TM4C123GH6PZ , TM4C123GH6ZRB , TM4C123GH6ZRB , TM4C123GH6ZXR , TM4C123GH6ZXR , TM4C1290NCPDT , TM4C1290NCPDT , TM4C1290NCZAD , TM4C1290NCZAD , TM4C1292NCPDT , TM4C1292NCPDT , TM4C1292NCZAD , TM4C1292NCZAD , TM4C1294KCPDT , TM4C1294KCPDT , TM4C1294NCPDT , TM4C1294NCPDT , TM4C1294NCZAD , TM4C1294NCZAD , TM4C1297NCZAD , TM4C1297NCZAD , TM4C1299KCZAD , TM4C1299KCZAD , TM4C1299NCZAD , TM4C1299NCZAD , TM4C129CNCPDT , TM4C129CNCPDT , TM4C129CNCZAD , TM4C129CNCZAD , TM4C129DNCPDT , TM4C129DNCPDT , TM4C129DNCZAD , TM4C129DNCZAD , TM4C129EKCPDT , TM4C129EKCPDT , TM4C129ENCPDT , TM4C129ENCPDT , TM4C129ENCZAD , TM4C129ENCZAD , TM4C129LNCZAD , TM4C129LNCZAD , TM4C129XKCZAD , TM4C129XKCZAD , TM4C129XNCZAD , TM4C129XNCZAD

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
  4. 2How to Install
    1. 2.1 Update the FreeRTOS Version in the TivaWare Directory
    2. 2.2 Adding FreeRTOS Hardware Driver Files for TM4C LaunchPads
  5. 3Architecture for TM4C FreeRTOS Examples
    1. 3.1 Proper Clock Configuration
    2. 3.2 How to use Hardware Interrupts Alongside the FreeRTOS Kernel
  6. 4Example Project Walkthroughs
    1. 4.1 Download and Import the Examples
    2. 4.2 CAN Examples
      1. 4.2.1 multi_can_rx
      2. 4.2.2 multi_can_tx
    3. 4.3 Hardware Timer Examples
      1. 4.3.1 timer_edge_capture
      2. 4.3.2 timer_edge_count
    4. 4.4 I2C Examples
      1. 4.4.1 i2c_simple_loopback
      2. 4.4.2 i2c_tmp117_demo
    5. 4.5 PWM Examples
      1. 4.5.1 pwm_interrupt
      2. 4.5.2 pwm_invert
    6. 4.6 SSI Examples
      1. 4.6.1 ssi_simple_xfer
      2. 4.6.2 ssi_quad_mode
    7. 4.7 μDMA Examples
      1. 4.7.1 adc_udma_pingpong
      2. 4.7.2 udma_mem_transfer

μDMA Examples

The Micro Direct Memory Access (μDMA) controller allows for data transfer tasks to be offloaded from the microcontroller core which results in more efficient use of the processor and memory bus. This enables programmers to minimize CPU cycles for certain tasks like peripheral-to-memory and memory-to-memory transfers. These benefits can greatly help to optimize a system using an RTOS. Three examples are provided to show how to use the μDMA in various modes as well as demonstrate both types of memory transfers.