SPRABI1D January   2018  – July 2022 66AK2E05 , 66AK2G12 , 66AK2H06 , 66AK2H12 , 66AK2H14 , 66AK2L06 , AM5K2E02 , AM5K2E04 , SM320C6678-HIREL , TMS320C6652 , TMS320C6654 , TMS320C6655 , TMS320C6657 , TMS320C6670 , TMS320C6671 , TMS320C6672 , TMS320C6674 , TMS320C6678

 

  1.   Trademarks
  2. Introduction
  3. Background
  4. Migrating Designs From DDR2 to DDR3 (Features and Comparisons)
    1. 3.1 Topologies
      1. 3.1.1 Balanced Line Topology
        1. 3.1.1.1 Balanced Line Topology Issues
      2. 3.1.2 Fly-By Topology
        1. 3.1.2.1 Balanced Line Topology Issues
    2. 3.2 ECC (Error Correction)
    3. 3.3 DDR3 Features and Improvements
      1. 3.3.1 Read Leveling
      2. 3.3.2 Write Leveling
      3. 3.3.3 Pre-fetch
      4. 3.3.4 ZQ Calibration
      5. 3.3.5 Reset Pin Functionality
      6. 3.3.6 Additional DDR2 to DDR3 Differences
  5. Prerequisites
    1. 4.1 High Speed Designs
    2. 4.2 JEDEC DDR3 Specification – Compatibility and Familiarity
    3. 4.3 Memory Types
    4. 4.4 Memory Speeds
    5. 4.5 Addressable Memory Space
    6. 4.6 DDR3 SDRAM/UDIMM Memories, Topologies, and Configurations
      1. 4.6.1 Topologies
      2. 4.6.2 Configurations
        1. 4.6.2.1 Memories – SDRAM Selection Criteria
    7. 4.7 DRAM Electrical Interface Requirements
      1. 4.7.1 Slew
      2. 4.7.2 Overshoot and Undershoot Specifications
        1. 4.7.2.1 Overshoot and Undershoot Example Calculations
      3. 4.7.3 Typical DDR3 AC and DC Characteristics
      4. 4.7.4 DDR3 Tolerances and Noise – Reference Signals
  6. Package Selection
    1. 5.1 Summary
      1. 5.1.1 ×4 SDRAM
      2. 5.1.2 ×8 SDRAM
      3. 5.1.3 ×16 SDRAM
      4. 5.1.4 ×32 SDRAM
      5. 5.1.5 ×64 SDRAM
  7. Physical Design and Implementation
    1. 6.1 Electrical Connections
      1. 6.1.1 Pin Connectivity and Unused Pins – SDRAM Examples
      2. 6.1.2 Pin Connectivity – ECC UDIMM and Non-ECC UDIMM Examples
    2. 6.2 Signal Terminations
      1. 6.2.1 External Terminations – When Using Read and Write Leveling
      2. 6.2.2 External Terminations – When Read and Write Leveling is Not Used
      3. 6.2.3 Internal Termination – On-Die Terminations
      4. 6.2.4 Active Terminations
      5. 6.2.5 Passive Terminations
      6. 6.2.6 Termination Component Selection
    3. 6.3 Mechanical Layout and Routing Considerations
      1. 6.3.1 Routing Considerations – SDRAMs
        1. 6.3.1.1  Mechanical Layout – SDRAMs
        2. 6.3.1.2  Stack Up – SDRAMs
        3. 6.3.1.3  Routing Rules – General Overview (SDRAMs)
        4. 6.3.1.4  Routing Rules – Address and Command Lines (SDRAMs)
        5. 6.3.1.5  Routing Rules – Control Lines (SDRAMs)
        6. 6.3.1.6  Routing Rules – Data Lines (SDRAMs)
        7. 6.3.1.7  Routing Rules – Clock Lines (SDRAMs)
        8. 6.3.1.8  Routing Rules – Power (SDRAMs)
        9. 6.3.1.9  Write Leveling Limit Impact on Routing – KeyStone I
        10. 6.3.1.10 Round-Trip Delay Impact on Routing – KeyStone I
        11. 6.3.1.11 Write Leveling Limit Impact on Routing – KeyStone II
        12. 6.3.1.12 Round-Trip Delay Impact on Routing – KeyStone II
      2. 6.3.2 Routing Considerations – UDIMMs
        1. 6.3.2.1 Mechanical Layout – UDIMMs
        2. 6.3.2.2 Stack Up – UDIMMs
        3. 6.3.2.3 Routing Rules – General Overview (UDIMMs)
        4. 6.3.2.4 Routing Rules – Address and Command Lines (UDIMMs)
        5. 6.3.2.5 Routing Rules – Control Lines (UDIMMs)
        6. 6.3.2.6 Routing Rules – Data Lines (UDIMMs)
        7. 6.3.2.7 Routing Rules – Clock Lines (UDIMMs)
        8. 6.3.2.8 Routing Rules – Power (UDIMMs)
        9. 6.3.2.9 Write-Leveling Limit Impact on Routing
    4. 6.4 Timing Considerations
    5. 6.5 Impedance Considerations
      1. 6.5.1 Routing Impedances – KeyStone I Devices
        1. 6.5.1.1 Data Group Signals
        2. 6.5.1.2 Fly-By Signals
      2. 6.5.2 Routing Impedances – KeyStone II Devices
        1. 6.5.2.1 Data Group Signals
        2. 6.5.2.2 Fly-By Signals
      3. 6.5.3 Comparison to JEDEC UDIMM Impedance Recommendations
    6. 6.6 Switching and Output Considerations
  8. Simulation and Modeling
    1. 7.1 Simulation and Modeling
    2. 7.2 Tools
    3. 7.3 Models
    4. 7.4 TI Commitment
  9. Power
    1. 8.1 DDR3 SDRAM Power Requirements
      1. 8.1.1 Vref Voltage Requirements
      2. 8.1.2 VTT Voltage Requirements
    2. 8.2 DSP DDR3 Power Requirements
    3. 8.3 DDR3 Power Estimation
    4. 8.4 DSP DDR3 Interface Power Estimation
    5. 8.5 Sequencing – DDR3 and DSP
  10. Disclaimers
  11. 10References
  12. 11Revision History

Round-Trip Delay Impact on Routing – KeyStone II

The leveling processes in the DDR3 interface impose an upper limit on the maximum round-trip delay. If this limit is exceeded, the DDR3 interface may fail the leveling process and data corruption may occur. This limit is sufficiently large that well-controlled topologies will not likely exceed the limit.

The round-trip delay for a given SDRAM is defined as the sum of two delays. The first is the delay for the clock, command, control, and address groups to that SDRAM. The second is the delay for the data group to that same SDRAM. This round-trip delay must be calculated for each byte-lane to each SDRAM device implemented in the DDR3 memory topology. All of these individual sums must be below the limit to ensure robust operation.

The DDR3 PHY logic has an upper limit of 6 clock cycles. For instance, when operating at 1600MT/s, the clock is 800MHz which has a period of 1250ps. The maximum round trip delay is 6 clock periods or 7500ps. At a propagation delay of 180ps per inch, this limits the maximum round trip routed length to over 41.6 inches.