SPRACD8 June   2019 DRA710 , DRA712 , DRA714 , DRA716 , DRA718 , DRA722 , DRA724 , DRA725 , DRA726 , DRA745 , DRA746 , DRA74P , DRA750 , DRA756 , DRA75P , DRA76P , DRA77P , DRA780 , DRA781 , DRA782 , DRA783 , DRA786 , DRA787 , DRA790 , DRA791 , DRA793 , DRA797 , TDA2EG-17 , TDA2HF , TDA2HG , TDA2HV , TDA2LF , TDA2P-ABZ , TDA2P-ACD , TDA2SA , TDA2SG , TDA2SX

 

  1.   Integrating New Cameras With Video Input Port on DRA7xx SoCs
    1.     Trademarks
    2. 1 Introduction
    3. 2 Video Input Port and Possible Video Sources
    4. 3 Kernel Changes to Integrate Camera Devices
      1. 3.1 V4L2 Endpoint Framework
        1. 3.1.1 VIP Device Definition
        2. 3.1.2 Camera Device Definition
      2. 3.2 Interfacing a Multichannel Video Source (TVP5158)
      3. 3.3 Interfacing a Camera Over LVDS Serializer Deserializer
        1. 3.3.1 I2C Address Remapping
        2. 3.3.2 Serializer/Deserializer Configuration
        3. 3.3.3 Serdes Device Definition
      4. 3.4 Setting up Pinmux and IODELAY
        1. 3.4.1 Getting Pinmux and IODELAY Values
      5. 3.5 Setting Up Board Muxes

V4L2 Endpoint Framework

Different camera/video sources have different configuration parameters when interfacing with the VIP video ports. Common interfacing properties like Horizontal Sync (Hsync), Vertical Sync (Vsync), Pclk polarities can be different across different devices. V4L2 endpoint, also known as v4l2_fwnode_endpoint, describes these as part of the device tree definition. This makes the VIP driver generic enough to have no dependency on the camera device. It also provides the flexibility to work with new cameras by doing simple device tree modifications.

The following example showcases the DT entries of VIP device node and its usage when interfacing different video sources.