SPRACK9 February   2019 AM1705 , AM1707 , AM1806 , AM1808 , OMAP-L132 , OMAP-L137 , OMAP-L138 , TMS320C6742 , TMS320C6745 , TMS320C6746 , TMS320C6747 , TMS320C6748

 

  1.   OMAP-L13x/C674x/AM1x schematic review guidelines
    1.     Trademarks
    2. 1 Introduction
    3. 2 Recommendations Specific to OMAP-L1x/TMS320C674x/AM1x
      1. 2.1 EVM vs Data Sheet
      2. 2.2 Before You Begin
        1. 2.2.1 Documentation
        2. 2.2.2 Pinout
      3. 2.3 Critical Connections
        1. 2.3.1 Decoupling capacitors
        2. 2.3.2 Power
        3. 2.3.3 Ground
        4. 2.3.4 Clocking
        5. 2.3.5 Reset
        6. 2.3.6 Boot
        7. 2.3.7 Pin multiplexing
        8. 2.3.8 Debug
      4. 2.4 Peripherals
        1. 2.4.1 UART
        2. 2.4.2 EMAC
        3. 2.4.3 MMC/SD
        4. 2.4.4 EMIF
          1. 2.4.4.1 NAND
          2. 2.4.4.2 NOR
          3. 2.4.4.3 DDR2/mDDR
        5. 2.4.5 SPI
        6. 2.4.6 I2C
        7. 2.4.7 McASP
          1. 2.4.7.1 Audio
        8. 2.4.8 USB
          1. 2.4.8.1 USB0 (USB 2.0 OTG)
          2. 2.4.8.2 USB1 (USB 1.1 OHCI)
          3. 2.4.8.3 Unused USB pins
          4. 2.4.8.4 USB Board Design Guidelines
            1. 2.4.8.4.1 Cautionary note - USB PHY off while host is still powered on
        9. 2.4.9 Other
          1. 2.4.9.1 Signal Visibility
          2. 2.4.9.2 Voltage Level Changes
          3. 2.4.9.3 Signal Terminations
          4. 2.4.9.4 Ground Symbols
          5. 2.4.9.5 Power Symbols
    4. 3 BGA PCB Design
    5. 4 Power Management Solutions
    6. 5 References
  2.   A XDS Connector Design Checklist
    1.     A.1 XDS Connector Design
  3.   B Connecting NOR Flash to OMAP-L138
    1.     B.1 Connecting Memory Devices <32 MB
    2.     B.2 Connecting Memory Devices >32 MB

Pinout

  • Have you verified that your pin labels correspond to the correct pin numbers?
  • Have you verified that the power pins are connected to the correct supply rails?
  • Pull-ups/pull-downs:
    • Internal pull-up/pull-down resistors are implemented with weak transistors. As the voltage present on the I/O pin varies, the relative gate voltage for this weak transistor changes, which will cause the effective pull-up/pull-down resistance to change. Therefore, internal resistors do not have a linear response like external resistors do. The non-linearity, along with process, voltage, and temperature variations, require internal pull-up/pull-down resistors to be specified with a wide range of resistance or current sourcing/sinking.
    • The input current without a pull-up or pull-down turned on defines the input leakage without any current from internal pull resistors. The input current with a pull-up or pull-down turned on defines a combination of input leakage current and current required to force the internal pull resistors to the opposite voltage rail. For example, if an internal pull-up is turned on, the value shown represents the total current required to pull the input to VSS.
    • When deciding what value of external resistor to use, you must consider the worst case combination of all internal leakage paths of all devices connected to a signal and make sure the external resistor is able to force these internal leakage paths to a potential greater than Vih min, or less than Vil max.