SPRACZ2 August   2022 TDA4VM , TDA4VM-Q1

ADVANCE INFORMATION  

  1.   Abstract
  2. 1Introduction
    1. 1.1 Vision Analytics
    2. 1.2 End Equipments
    3. 1.3 Deep learning: State-of-the-art
  3. 2Embedded edge AI system: Design considerations
    1. 2.1 Processors for edge AI: Technology landscape
    2. 2.2 Edge AI with TI: Energy-efficient and Practical AI
      1. 2.2.1 TDA4VM processor architecture
        1. 2.2.1.1 Development platform
    3. 2.3 Software programming
  4. 3Industry standard performance and power benchmarking
    1. 3.1 MLPerf models
    2. 3.2 Performance and efficiency benchmarking
    3. 3.3 Comparison against other SoC Architectures
      1. 3.3.1 Benchmarking against GPU-based architectures
      2. 3.3.2 Benchmarking against FPGA based SoCs
      3. 3.3.3 Summary of competitive benchmarking
  5. 4Conclusion
  6.   Revision History
  7. 5References

Industry standard performance and power benchmarking

While different SoC vendors use different metrics to benchmark deep learning performance and power across multiple devices, there is an initiative in the industry to standardize benchmarking for apples-to-apples comparison. Driven by more than 30 organizations, MLPerf Inference [9] prescribes a set of rules and best practices to ensure comparability across systems with wildly differing architectures. We will primarily use these guidelines for performance and power benchmarking.