SPRACZ2 August   2022 TDA4VM , TDA4VM-Q1

ADVANCE INFORMATION  

  1.   Abstract
  2. 1Introduction
    1. 1.1 Vision Analytics
    2. 1.2 End Equipments
    3. 1.3 Deep learning: State-of-the-art
  3. 2Embedded edge AI system: Design considerations
    1. 2.1 Processors for edge AI: Technology landscape
    2. 2.2 Edge AI with TI: Energy-efficient and Practical AI
      1. 2.2.1 TDA4VM processor architecture
        1. 2.2.1.1 Development platform
    3. 2.3 Software programming
  4. 3Industry standard performance and power benchmarking
    1. 3.1 MLPerf models
    2. 3.2 Performance and efficiency benchmarking
    3. 3.3 Comparison against other SoC Architectures
      1. 3.3.1 Benchmarking against GPU-based architectures
      2. 3.3.2 Benchmarking against FPGA based SoCs
      3. 3.3.3 Summary of competitive benchmarking
  5. 4Conclusion
  6.   Revision History
  7. 5References

Comparison against other SoC Architectures

MLcommons page [9] has several published results for these models by different vendors for SoCs using three kinds of processors – GPU based, FPGA based and other embedded processors. We will compare TDA4VM results against these other architectures.