SPRUHJ0C April   2013  – October 2021 TMS320F28068M , TMS320F28069-Q1 , TMS320F28069M , TMS320F28069M-Q1

 

  1. 1Read This First
    1. 1.1 About This Manual
    2. 1.1 Glossary
    3. 1.1 Support Resources
    4.     Trademarks
  2. 1 F2806xM InstaSPIN-MOTION Enabled MCUs
  3. 2InstaSPIN-MOTION Key Capabilities and Benefits
    1. 2.1 Overview
    2. 2.2 FAST Unified Observer
    3. 2.3 SpinTAC Motion Control Suite
      1.      IDENTIFY
      2.      CONTROL
      3.      MOVE
      4.      PLAN
    4. 2.4 Additional InstaSPIN-MOTION Features
  4. 3InstaSPIN-MOTION Block Diagrams
    1.     Scenario 1: InstaSPIN-MOTION Speed Control with FAST Software Encoder
    2.     Scenario 2: InstaSPIN-MOTION Speed Control with a Mechanical Sensor
    3.     Scenario 3: InstaSPIN-MOTION Position Control with Mechanical Sensor and Redundant FAST Software Sensor
  5. 4Application Examples
    1. 4.1 Treadmill Conveyor: Smooth Motion Across Varying Speeds and Loads
    2. 4.2 Video Camera: Smooth Motion and Position Accuracy at Low Speeds
    3. 4.3 Washing Machine: Smooth Motion and Position Accuracy at Low Speeds
      1.      Agitation Cycle
      2.      Spin Cycles
    4. 4.4 InstaSPIN-MOTION Works Over the Entire Operating Range
  6. 5Evaluating InstaSPIN-MOTION Performance
    1. 5.1 Overview
    2. 5.2 Velocity Control Performance: SpinTAC vs PI
      1. 5.2.1 Disturbance Rejection
      2. 5.2.2 Reference Tracking
      3. 5.2.3 Step Response
    3. 5.3 Position Control Performance: SpinTAC vs PI
      1. 5.3.1 Disturbance Rejection
      2. 5.3.2 Reference Tracking
      3. 5.3.3 Step Response
      4. 5.3.4 Inertia Estimation Repeatability
  7. 6Microcontroller Resources
    1. 6.1 CPU Utilization
    2. 6.2 Memory Utilization
    3. 6.3 Pin Utilization
      1.      A Resources
        1.       B Definition of Terms and Acronyms
          1.        C Revision History

Step Response

The step tests for a position controller provide giving a step input to the controller to determine how quickly the controller can respond to a sudden input change. The two metrics evaluated during these tests are settling time and maximum overshoot. This test is also a measure of stability of your controller. If the controller oscillates upon reaching the goal speed then it is not very stable.

A step profile was applied to SpinTAC Position Control and the PI control system. This step input bypassed the profile generator. The following parameters were measured:

  • Settling Time (from the step input until within 2% of the target position) - the settling time reflects how long it takes the controller to reach the goal position.
  • Maximum Overshoot - maximum mechanical degrees measured after the step input.

Figure 6-13 compares the step responses of SpinTAC Position Control and the PI control system. It also provides a visual representation showing how these metrics were calculated. SpinTAC Position Control was able to reach the goal position with zero overshoot and a shorter settling time than the PI control system.

GUID-1630ABAC-C518-4C37-A460-87AA1070BF67-low.pngFigure 5-13 Step Response Test of Maximum Overshoot and Settling Time

 

Table 5-10 SpinTAC vs PI Position Control Step Response Test Results (Teknic Motor)
Settling Time(s)Overshoot (mechanical degrees)
SpinTACPISpinTAC Advantage (percentage improvement over PI)SpinTACPISpinTAC Advantage (percentage improvement over PI)
0-4.9 mechanical degrees
0.230.5457.40.000.000.0
0.220.4551.10.000.000.0
0.250.4645.70.000.000.0
0.280.4537.80.000.000.0
0.270.4337.20.000.000.0
0-2.5 mechanical degrees
0.240.3634.40.000.000.0
0.230.3839.50.000.000.0
0.240.4141.50.000.000.0
0.230.4042.50.000.000.0
0.210.4148.80.000.000.0
0-1.25 mechanical degrees
0.210.4148.50.000.000.0
0.200.4151.20.000.000.0
0.180.4660.90.000.000.0
0.180.4055.00.000.000.0
0.230.3839.50.000.000.0
Table 5-11 SpinTac vs PI Position Control Step Response Test Results (Estun Motor)
Settling Time(s)Overshoot (mechanical degrees)
SpinTACPISpinTAC Advantage (percentage improvement over PI)SpinTACPISpinTAC Advantage (percentage improvement over PI)
0-4.9 mechanical degrees
0.670.59-13.64.54e+21.26e+363.9
0.940.57-66.14.57e+21.26e+363.7
0.860.57-49.64.58e+21.27e+363.8
0.700.60-15.54.58e+21.27e+363.8
0.810.62-30.14.58e+21.28e+364.3
0-2.5 mechanical degrees
0.530.50-5.88.14e+14.03e+279.8
0.520.48-8.38.14e+14.18e+280.5
0.620.49-27.28.17e+14.10e+280.1
0.560.47-18.28.17e+14.18e+280.5
0.170.4965.28.14e+13.70e+278.0
0-1.25 mechanical degrees
0.530.42-26.20.001.69e+1100
0.530.32-65.60.001.44e+1100
0.530.33-63.10.001.69e+1100
0.530.41-30.60.001.63e+1100
0.600.36-68.40.001.63e+1100