SPRUIG3C January   2018  – August 2019 TDA4VM , TDA4VM-Q1

 

  1.   Read This First
    1.     About This Manual
    2.     Related Documentation
    3.     Trademarks
  2. 1Overview and Scope
    1. 1.1 Comparing VCOP and C7000
    2. 1.2 About this Document
      1. 1.2.1 Documentation Conventions
    3. 1.3 Output Format
    4. 1.4 Data Types
      1. 1.4.1 40-bit Incompatibilities
      2. 1.4.2 40-Bit Detection in Host Emulation Mode
    5. 1.5 SIMD Width
    6. 1.6 VCOP Virtual Machine
  3. 2Kernel API
    1. 2.1 Overview
    2. 2.2 Parameter Block
      1. 2.2.1 Tvals Structure
      2. 2.2.2 Pblock Manipulation
  4. 3Loop Control
    1. 3.1 Overview
    2. 3.2 Loop Control and Nested Loops
    3. 3.3 Repeat Loops
    4. 3.4 Compound Conditions
    5. 3.5 Early Exit
  5. 4Addressing
    1. 4.1 Overview
    2. 4.2 Streaming Engines
    3. 4.3 Streaming Address Generators
    4. 4.4 Indexed Addressing
    5. 4.5 Circular Addressing
  6. 5Operations
    1. 5.1 Load Operations
    2. 5.2 Store Operations
      1. 5.2.1 Predicated Stores
      2. 5.2.2 Scatter and Transposing Stores
      3. 5.2.3 Optimization of OFFSET_NP1-Based Transpose
      4. 5.2.4 Rounding Stores
      5. 5.2.5 Saturating Stores
    3. 5.3 Arithmetic Operations
      1. 5.3.1 Vector Compares
      2. 5.3.2 Multiplication with Rounding, Truncation, or Left Shift
    4. 5.4 Lookup and Histogram Table Operations
      1. 5.4.1 Determination of Table Size
      2. 5.4.2 Table Configuration
      3. 5.4.3 Copy-in Operation
      4. 5.4.4 Copy-out Operation
      5. 5.4.5 Index Adjustment from Non-zero Agen
      6. 5.4.6 Lookup Operation
      7. 5.4.7 Histogram Update Operation
      8. 5.4.8 16-Way Lookup and Histogram
  7. 6Performance
    1. 6.1 Overview
    2. 6.2 Compiler Requirements
    3. 6.3 Automatic Performance Profiling
    4. 6.4 Performance Options
  8.   A Warnings and Notes
    1.     A.1 Compatibility Warnings
    2.     A.2 Efficiency Warnings

Streaming Address Generators

C7x has four streaming address generators (SA) that provide zero-overhead address offset calculations for nested loops, similar to VCOP’s Agens. The SAs are similar to the SEs, with the following differences:

  • They can be used for both loads and stores.
  • They do not offer the same pre-fetch advantage as the SEs.
  • They do not have the flexible formatting options that allow seamless emulation of VCOP’s distribution modes.
  • The base address is not pre-initialized; therefore SAs can be shared between loads and stores that use the same Agen on VCOP.

After assigning the two SEs to the highest priority loads to SEs, the migration tool assigns the four SAs to the next highest priority loads and stores (perhaps more than four if some share Agens). The process for using SAs is similar to that for SEs in the previous section. The primary difference is that the base address is passed to the access intrinsic rather to the SA_OPEN() call.