SPRZ272N September   2007  – April 2022 SM320F28335-EP , SM320F28335-HT , TMS320F28232 , TMS320F28232-Q1 , TMS320F28234 , TMS320F28234-Q1 , TMS320F28235 , TMS320F28235-Q1 , TMS320F28332 , TMS320F28333 , TMS320F28334 , TMS320F28335 , TMS320F28335-Q1

 

  1. 1Usage Notes and Advisories Matrices
    1. 1.1 Usage Notes Matrix
    2. 1.2 Advisories Matrix
  2. 2Nomenclature, Package Symbolization, and Revision Identification
    1. 2.1 Device and Development Support Tool Nomenclature
    2. 2.2 Devices Supported
    3. 2.3 Package Symbolization and Revision Identification
    4. 2.4 Silicon Change Overview
  3. 3Silicon Revision A Usage Notes and Advisories
    1. 3.1 Silicon Revision A Usage Notes
      1. 3.1.1 PIE: Spurious Nested Interrupt After Back-to-Back PIEACK Write and Manual CPU Interrupt Mask Clear Usage Note
      2. 3.1.2 Caution While Using Nested Interrupts
      3. 3.1.3 Watchdog: Watchdog Issues Reset After Bad Key is Written
      4. 3.1.4 McBSP: XRDY Bit can Hold the Not-Ready Status (0) if New Data is Written to the DX1 Register Without First Verifying if the XRDY Bit is in its Ready State (1)
      5. 3.1.5 Maximum Flash Program Time and Erase Time in Revision O of the TMS320F2833x, TMS320F2823x Real-Time Microcontrollers Data Sheet
    2. 3.2 Silicon Revision A Advisories
      1.      Advisory
      2.      Advisory
      3.      Advisory
      4.      Advisory
      5.      Advisory
      6.      Advisory
      7.      Advisory
      8.      Advisory
      9.      Advisory
      10.      Advisory
      11.      Advisory
      12.      Advisory
      13.      Advisory
  4. 4Silicon Revision 0 Usage Notes and Advisories
    1. 4.1 Silicon Revision 0 Usage Notes
    2. 4.2 Silicon Revision 0 Advisories
      1.      Advisory
      2.      Advisory
      3.      Advisory
  5. 5Documentation Support
  6. 6Trademarks
  7. 7Revision History

Advisory

Memory: Prefetching Beyond Valid Memory

Revision(s) Affected

0, A

Details

The C28x CPU prefetches instructions beyond those currently active in its pipeline. If the prefetch occurs past the end of valid memory, then the CPU may receive an invalid opcode.

Workaround

The prefetch queue is 8 x16 words in depth. Therefore, code should not come within 8 words of the end of valid memory. This restriction applies to all memory regions and all memory types (flash, OTP, SARAM, XINTF) on the device. Prefetching across the boundary between two valid memory blocks is all right.

Example 1: M1 ends at address 0x7FF and is not followed by another memory block. Code in M1 should be stored no farther than address 0x7F7. Addresses 0x7F8–0x7FF should not be used for code.

Example 2: M0 ends at address 0x3FF and valid memory (M1) follows it. Code in M0 can be stored up to and including address 0x3FF. Code can also cross into M1 up to and including address 0x7F7.