SPRZ458F May   2019  – February 2024 TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388S

 

  1.   1
  2.   TMS320F2838x MCUs Silicon Errata Silicon Revisions A, 0
  3. 1Usage Notes and Advisories Matrices
    1. 1.1 Usage Notes Matrix
    2. 1.2 Advisories Matrix
  4. 2Nomenclature, Package Symbolization, and Revision Identification
    1. 2.1 Device and Development-Support Tool Nomenclature
    2. 2.2 Devices Supported
    3. 2.3 Package Symbolization and Revision Identification
  5. 3Silicon Revision A Usage Notes and Advisories
    1. 3.1 Silicon Revision A Usage Notes
      1. 3.1.1 PIE: Spurious Nested Interrupt After Back-to-Back PIEACK Write and Manual CPU Interrupt Mask Clear
      2. 3.1.2 Caution While Using Nested Interrupts
      3. 3.1.3 GPIO: GPIO Data Register is Reset by CPU1 Reset Only
      4. 3.1.4 McBSP: XRDY bit can Hold the Not-Ready-Status (0) if New Data is Written to the DX1 Register Without Verifying if the XRDY bit is in its Ready State (1)
      5. 3.1.5 Security: The primary layer of defense is securing the boundary of the chip, which begins with enabling JTAGLOCK and Zero-pin Boot to Flash feature
    2. 3.2 Silicon Revision A Advisories
      1.      Advisory
      2.      Advisory
      3.      Advisory
      4. 3.2.1 Advisory
      5. 3.2.2 Advisory
      6. 3.2.3 Advisory
      7.      Advisory
      8.      Advisory
      9.      Advisory
      10.      Advisory
      11.      Advisory
      12.      Advisory
      13.      Advisory
      14.      Advisory
      15.      Advisory
      16.      Advisory
      17.      Advisory
      18.      Advisory
      19.      Advisory
      20.      Advisory
      21.      Advisory
      22.      Advisory
      23.      Advisory
      24.      Advisory
  6. 4Silicon Revision 0 Usage Notes and Advisories
    1. 4.1 Silicon Revision 0 Usage Notes
    2. 4.2 Silicon Revision 0 Advisories
      1.      Advisory
      2.      Advisory
      3.      Advisory
      4.      Advisory
      5.      Advisory
      6.      Advisory
      7.      Advisory
      8.      Advisory
      9.      Advisory
      10.      Advisory
      11.      Advisory
  7. 5Documentation Support
  8. 6Trademarks
  9. 7Revision History

Advisory

ePWM: An ePWM Glitch can Occur if a Trip Remains Active at the End of the Blanking Window

Revisions Affected

0, A

Details

The blanking window is typically used to mask any PWM trip events during transitions which would be false trips to the system. If an ePWM trip event remains active for less than three ePWM clocks after the end of the blanking window cycles, there can be an undesired glitch at the ePWM output.

Figure 3-1 illustrates the time period which could result in an undesired ePWM output.

GUID-D0E1B440-CEFC-40B4-99D6-53F92D23F5C6-low.gifFigure 3-1 Undesired Trip Event and Blanking Window Expiration

Figure 3-2 illustrates the two potential ePWM outputs possible if the trip event ends within 1 cycle before or 3 cycles after the blanking window closes.

GUID-2711B7E8-79EE-44EF-B1D5-AB8B1526CE85-low.gifFigure 3-2 Resulting Undesired ePWM Outputs Possible

Workaround

Extend or reduce the blanking window to avoid any undesired trip action.