SSZT991 august 2017 TUSB1002 , TUSB1042I , TUSB1046A-DCI , TUSB211 , TUSB212 , TUSB212-Q1 , TUSB213 , TUSB213-Q1 , TUSB214 , TUSB214-Q1 , TUSB215 , TUSB215-Q1 , TUSB501 , TUSB522P , TUSB542 , TUSB544 , TUSB546A-DCI , TUSB551 , TUSB564
The rapid growth of USB Type-C enables a unified interface to deliver data, video, audio and power through a single connector. USB Type-C™ not only supports the latest USB data rate of 10Gbps, it also enables up to 100W power delivery through the same cable carrying the data traffic simultaneously. Type-C has reversible plug orientation; it also allows host and device to perform data role swap and power role swap providing ease of use and flexibility. In addition, USB Type-C can also deliver high resolution video protocol over Type-C interface, eliminating different cable and connector needs thus greatly simplify and enhance user experience. Billions of devices will use the USB Type-C interface to connect in the coming years.
You can integrate many popular protocols such as DisplayPort™, Thunderbolt and High-Definition Multimedia Interface (HDMI) into USB Type-C through Alternate Mode. Ensuring signal integrity for these various protocols over four high-speed lanes represents a challenge for designers, however.
The TUSB544 is the industry’s first USB Type-C Alternate Mode multiprotocol bidirectional linear redriver supporting USB 3.1 at 5Gbps and DisplayPort 1.4 at 8.1Gbps. TUSB544 resolves signal-integrity issues at the USB Type-C connector to compensate channel loss for USB hosts and devices, thus output clean Type-C signals. For DisplayPort source or sink devices, placing the TUSB544 inside the USB Type-C cable enables the use of longer cables and improves signal quality.
There are many use cases for the TUSB544 in a system. Some central processing units (CPUs) and mobile processors have an integrated USB Type-C multiplexer in the processor; the CPU will multiplex 4 DisplayPort™ lanes and 2 USB lanes into 4 high speed output, each lane can be individually configured as USB or DisplayPort. If you place the TUSB544 near the connector – on either the transmitter or receiver side – you can configure the four USB Type-C lanes as negotiated by the source and sink devices and redrive the signal in either direction according to your protocol needs. For example, the signal over USB Type-C can be USB only, four-lane DisplayPort only, or two-lane USB and two-lane DisplayPort. Figure 1 shows an end-to-end USB Type-C solution using the TUSB544 as a redriver.
The TUSB544 linear redriver can reduce design complexity and provide device placement flexibility in your system. The device particularly benefits DisplayPort applications because it is transparent to link training, establishing a better channel with a minimal bit error rate for clear video displays.
Another use case for the TUSB544 is to create active cable for extending USB Type-C cable lengths because you can place the redriver inside the cable to compensate for cable loss. Figure 2 shows the eye diagram of a 3m USB Type-C cable without any redriver. The red circles indicate that the eye diagram is failing the eye mask.
By applying the TUSB544 onUSB Type-C high-speed lanes and the TUSB211 on USB 2.0 lanes, you can improve the signal quality for all USB 3.1, DisplayPort and USB 2.0 signals at the USB Type-C interface. Figure 3 shows a USB Type-C active cable solution with the TUSB544 and TUSB211.
After adding the TUSB544, the eye diagram passes, with excellent performance for a 3m USB Type-C cable, as illustrated in Figure 4.
To enable even longer USB Type-C cables, you can place two TUSB544 redrivers at both ends of the cable to provide enough channel-loss compensation. You will see excellent performance as well with a 5m USB Type-C cable that has a TUSB544 placed at each end, as shown in Figure 5.
The TUSB544 offers flexibility when redriving USB Type-C signals for USB and DisplayPort applications to deliver clean and excellent signal quality. It helps systems pass compliance tests, enables better interoperability and improves USB Type-C system performance.