SWRA478D February   2015  – January 2019 CC1310 , CC1312PSIP , CC1312R , CC1314R10 , CC1352P , CC1352P7 , CC1352R , CC2640 , CC2640R2F , CC2640R2F-Q1 , CC2642R , CC2642R-Q1 , CC2650 , CC2650MODA , CC2652P , CC2652R , CC2652R7 , CC2652RB , CC2652RSIP

 

  1.   Trademarks
  2. 1Introduction
    1. 1.1 Acronyms
  3. 2Standby
  4. 3Understanding Bluetooth Low Energy Power Metrics
  5. 4SimpleLink Bluetooth Low Energy Wireless MCUs
  6. 5Power Measurement Setup – Preparing the DUT
    1. 5.1 Requirements
    2. 5.2 Embedded Software
    3. 5.3 Hardware
      1. 5.3.1 CC26x2R LaunchPad
    4. 5.4 BTool (Optional)
  7. 6Measuring Power Consumption With a DC Power Analyzer
    1. 6.1 Test Setup
      1. 6.1.1 Analysis Software Setup
    2. 6.2 Measurement Using Scope
    3. 6.3 Analysis
      1. 6.3.1 Advertising Event
      2. 6.3.2 Connection Event
      3. 6.3.3 Power Consumption Calculator
  8. 7EnergyTrace
    1. 7.1 Modifying the rfPacketTX Example
  9. 8References
  10. 9Revision History

Measuring Power Consumption With a DC Power Analyzer

The most accurate way of measuring power consumption is to use a DC Power Analyzer (since the power consumption varies over time, a simple multimeter will not be sufficient). An oscilloscope can be used as well, as long as the sampling rate and bandwidth is good enough. For the purpose of this application report, an Agilent N6705B DC Power Analyzer is used (see Figure 6-1). The internal module is a N6781A, a 2-quadrant source and measure unit for battery drain analysis.

GUID-F81A6772-69EB-4382-9810-8A58209C4840-low.jpg Figure 6-1 Agilent N6705B DC Power Analyzer