SWRU439M October   2015  – April 2022

 

  1.   Trademarks
  2. 1Introduction
  3. 2Overview
    1. 2.1 Sensor Controller and AUX Domain Hardware Overview
      1. 2.1.1 Hardware Functionality
      2. 2.1.2 Power and Clock Management
        1. 2.1.2.1 CC13x0 and CC26x0 Operation Modes
        2. 2.1.2.2 CC13x2 and CC26x2 Operation Modes
        3. 2.1.2.3 Communication With the System CPU Application
    2. 2.2 Sensor Controller Interface Driver
      1. 2.2.1 Tailored How-To-Use Guide
      2. 2.2.2 Doxygen Documentation
    3. 2.3 Sensor Controller Programming Model
    4. 2.4 Sensor Controller Tasks
      1. 2.4.1 Data Structures
      2. 2.4.2 Task Code Blocks
      3. 2.4.3 High-Level Program Flow
    5. 2.5 Task Testing and Debugging
    6. 2.6 Run-Time Logging
  4. 3Prerequisites
    1. 3.1 Driver
    2. 3.2 Examples
  5. 4Installation
    1. 4.1 Sensor Controller Studio for Windows
      1. 4.1.1 Update Service
    2. 4.2 Sensor Controller Studio CLI for Linux (64-Bit)
  6. 5Sensor Controller Studio Tutorials
  7. 6Sensor Controller Studio Walkthrough
    1. 6.1  Start Page and Navigation
    2. 6.2  Documentation
    3. 6.3  Open the Example
    4. 6.4  Project Panel
    5. 6.5  Task Panel Settings
    6. 6.6  Constants and Data Structures Panel
    7. 6.7  Task Code Editor Panels
    8. 6.8  I/O Mapping Panel
    9. 6.9  Code Generator Panel
    10. 6.10 Compiling Example Applications in IAR or CCS
    11. 6.11 Task Testing Panel
      1. 6.11.1 Task Testing Setup
      2. 6.11.2 Task Testing Session
      3. 6.11.3 Data Handling
      4. 6.11.4 Task Debugging Panel
    12. 6.12 Run-Time Logging Panel
      1. 6.12.1 Run-Time Logging Setup
      2. 6.12.2 Run-Time Logging Session
  8. 7References
  9. 8Revision History

Run-Time Logging

The Sensor Controller Studio provides a generic, easy-to-use environment for evaluating and optimizing performance of tasks while these run at full speed, as they would in the actual application.

Run-time logging can be performed using a generic System CPU application image programmed by Sensor Controller Studio (through an XDS100v3 or XDS110 JTAG debug probe), or it can be performed using a custom application image programmed manually into flash. Commands and data are then transferred over UART, using a protocol based on the network processor interface (NPI).

The task data structures can be selected individually as either logged or editable. Logged data structures can be displayed graphically in Sensor Controller Studio and can also be saved to file for external analysis. Editable data structures can be modified by Sensor Controller Studio while the tasks are running on the Sensor Controller.