TIDT289 July   2022

 

  1.   Description
  2.   Features
  3.   Applications
  4. 1Test Prerequisites
    1. 1.1 Voltage and Current Requirements
    2. 1.2 Considerations
    3. 1.3 Dimensions
  5. 2Testing and Results
    1. 2.1 Efficiency Graphs
    2. 2.2 Load Regulation
      1. 2.2.1 Output Voltage 1 (1.1 V)
      2. 2.2.2 Output Voltage 2 (3.3 V)
    3. 2.3 Thermal Images
    4. 2.4 Bode Plots
      1. 2.4.1 Output Voltage 1 (1.1 V at 6 A)
      2. 2.4.2 Output Voltage 2 (3.3 V at 1 A)
  6. 3Waveforms
    1. 3.1 Switching
      1. 3.1.1 Output Voltage 1 (1.1 V at 6 A)
        1. 3.1.1.1 Test Point TP3may be TP3 can be linked to the schematic which will be uploaded with the design (Pin SW_B0)
        2. 3.1.1.2 Test Point TP9may be TP9 can be linked to the schematic which will be uploaded with the design (Pin SW_B1)
      2. 3.1.2 Output Voltage 2 (3.3 V at 1 A)
    2. 3.2 Output Voltage Ripple
      1. 3.2.1 VOUT1 (1.1 VD at 6 A) and VOUT2 (3.3 V at 1 A)
      2. 3.2.2 VOUT3 (2.5 V at 0.3 A) and VOUT4 (1.1 V at 0.4 A)
    3. 3.3 Input Voltage Ripple
    4. 3.4 Load Transients
      1. 3.4.1 Switching Load on Output Voltage 1 (1.1 VD)
        1. 3.4.1.1 Output Voltage 1 (VOUT1)
        2. 3.4.1.2 Cross Talking on VOUT2 (3.3 V)
      2. 3.4.2 Switching Load on Output Voltage 2 (3.3 V)
    5. 3.5 Start-Up Sequence
      1. 3.5.1 Hot Plug-In
      2. 3.5.2 Enable with Switch S1
        1. 3.5.2.1 All Traces
        2. 3.5.2.2 Without VOUT1
        3. 3.5.2.3 Without VOUT4
    6. 3.6 Shutdown Sequence
      1. 3.6.1 Hot Plug Off
      2. 3.6.2 Disable With Switch S1
        1. 3.6.2.1 All Traces
        2. 3.6.2.2 Without VOUT1
        3. 3.6.2.3 Without VOUT4

Considerations

  • Unless otherwise mentioned, electronic load were used for Output Voltage 1 and a variable resistor were used for Output Voltage 2
  • All measurements were done with 5-V input voltage
  • Switching frequency of prototype measured at 2.032 MHz
Note:

The device itself is one time programmable (= OTP) – dedicated directly for customer application; this allows best performance, easy design and lowest part count just by customer specification. Beside comfortable control and monitoring via I2C bus, this OTP feature basically enables a custom device for any individual design. Multiple designs could be covered with a single controller. For sensitive designs, this results in a copy protection as well.

By OTP file current at:

  • Phase #0 and #1 providing 1.1 VD is limited at 8.5 A
  • Phase #2 providing 3.3 V is limited to 1.3 A