TIDT319 December   2022

 

  1.   Description
  2.   Features
  3.   Applications
  4. 1Test Prerequisites
    1. 1.1 Voltage and Current Requirements
    2. 1.2 Considerations
    3. 1.3 Dimensions
  5. 2Testing and Results
    1. 2.1 Efficiency Graph
    2. 2.2 Loss Graph
    3. 2.3 Load Regulation
    4. 2.4 Thermal Images
      1. 2.4.1 Summary, Hottest Spot High-Side FET Q6, NVMFS5C645NL
      2. 2.4.2 Thermal Images
      3. 2.4.3 Thermal Mechanics
    5. 2.5 Bode Plots
      1. 2.5.1 Bode Plot Summary, Loop Bandwidth 16 kHz
      2. 2.5.2 24-V Input Voltage
      3. 2.5.3 36-V Input Voltage
      4. 2.5.4 48-V Input Voltage
  6. 3Waveforms for 2 × LM5143A-Q1 in Four Phase Configuration and Interleaved Operation
    1. 3.1 Switching
      1. 3.1.1 Overview of the Four Switching Phases
        1. 3.1.1.1 24-V Input Voltage
        2. 3.1.1.2 36-V Input Voltage
        3. 3.1.1.3 48-V Input Voltage
      2. 3.1.2 Low-Side FET
        1. 3.1.2.1 Switch Node to GND
        2. 3.1.2.2 Low-Side FET Gate to GND
      3. 3.1.3 High-Side FET
        1. 3.1.3.1 Switch Node to VIN
        2. 3.1.3.2 High-Side FET Gate to Switch Node
    2. 3.2 Output Voltage Ripple
    3. 3.3 Input Voltage Ripple
      1. 3.3.1 Board Input
        1. 3.3.1.1 24-V Input Voltage
        2. 3.3.1.2 36-V Input Voltage
        3. 3.3.1.3 48-V Input Voltage
      2. 3.3.2 Power Stage Input, No Input Filter
        1. 3.3.2.1 24-V Input Voltage
        2. 3.3.2.2 36-V Input Voltage
        3. 3.3.2.3 48-V Input Voltage
    4. 3.4 Load Transients
      1. 3.4.1 Load Transient 10 A to 50 A (80 %)
      2. 3.4.2 Load Transient 5 A to 50 A (90 %)
    5. 3.5 Start-Up Sequence
    6. 3.6 Shutdown Sequence
  7.   A Individual Adjusting of the Rising Edge and Falling Edge With LM5143A
    1.     A.1 2.21-Ω High and 4.75-Ω Low Resistor in Before Gate of the High-Side FET
    2.     A.2 2 × 4.75-Ω Resistors in Before Gate of the High-Side FET
  8.   B Measurements Across the Low-Side FETs to Check at All Four Phases
    1.     B.1 FET Q3
    2.     B.2 FET Q4
    3.     B.3 FET Q7
    4.     B.4 FET Q8
  9.   C ON Demand – Assembly of Thermal Interface
    1.     C.1 Thermal Interface Example

Considerations

Unless otherwise indicated, all measurements were done with 24-V input voltage and 50-A output current.

The load used was an electronic load TDI RBL100-120-800, limited to 800 WMAX, squeezed up to 828 W; the source was the SMPS Agilent 6574A, limited to a maximum 35-A input current, squeezed up to 35.8 A.

Efficiency and thermal image measurements up to 60-A continuous current are provided, but with a proper thermal interface there is still some headroom left – the current limitation trips at around 70 A.

Unless otherwise indicated, an air flow of 0.5 meters per second (m/s) to 1 m/s was used for the first measurements.


CAUTION: Make sure the wiring is properly connected. The output current can be as high as 60 A and the input current can be as high as 30 A.
GUID-20221026-SS0I-HR0P-KH0P-SQ71MLV7MFJL-low.jpg Figure 1-1 Board Image With Connected Cable
WARNING: A 16-mm2 cable cross section still gets warm and provides a minor voltage drop. Always wear eye protection when working with this reference design, and do not wear watches or rings.