TIDUEP0
May
2020
Description
Resources
Features
Applications
1 Design Images
2 System Description
2.1
Key System Specifications
3 System Overview
3.1
Block Diagram
3.2
Design Considerations
3.2.1
Small Compact Size
3.2.2
Transformer less Solution
3.3
Highlighted Products
3.3.1
TPD4E05U06 4-Channel Ultra-Low-Capacitance IEC ESD Protection Diode
3.3.2
TPD2EUSB30 2-Channel ESD Solution for SuperSpeed USB 3.0 Interface
3.3.3
2.3.3 HD3SS3220 10Gbps USB 3.1 USB Type-C 2:1 MUX With DRP Controller
3.3.4
TPS54218 2.95V to 6V Input, 2A Synchronous Step-Down SWIFT™ Converter
3.3.5
TPS54318 2.95V to 6V Input, 3A Synchronous Step-Down SWIFT™ Converter
3.3.6
CSD19538Q3A 100V, N ch NexFET MOSFET™, single SON3x3, 49mOhm
3.3.7
LM3488 2.97V to 40V Wide Vin Low-Side N-Channel Controller for Switching Regulators
3.3.8
TPS61178 20-V Fully Integrated Sync Boost with Load Disconnect
3.3.9
LMZM23601 36-V, 1-A Step-Down DC-DC Power Module in 3.8-mm × 3-mm Package
3.3.10
TPS7A39 Dual, 150mA, Wide-Vin, Positive and Negative Low-Dropout (LDO) Voltage Regulator
3.3.11
TPS74201 Single-output 1.5-A LDO regulator, adjustable (0.8V to 3.3V), any or no cap, programmable soft start
3.3.12
LP5910 300-mA low-noise low-IQ low-dropout (LDO) linear regulator
3.3.13
LP5907 250-mA ultra-low-noise low-IQ low-dropout (LDO) linear
3.3.14
INA231 28V, 16-bit, i2c output current/voltage/power monitor w/alert in wcsp
3.4
System Design Theory
3.4.1
Input Section
3.4.2
Designing of SEPIC based High Voltage Supply
3.4.2.1
Basic Operation Principle of SEPIC Converter
3.4.2.2
Design of Dual SEPIC Supply using uncoupled inductors
3.4.2.3
Duty Cycle
3.4.2.4
Inductor Selection
3.4.2.5
Power MOSFET Selection
3.4.2.6
Output Diode Selection
3.4.2.7
Coupling Capacitor Selection
3.4.2.8
Output Capacitor Selection
3.4.2.9
Input Capacitor Selection
3.4.2.10
Programming the Output Voltage
3.4.3
Designing the Low Voltage Power Supply
3.4.4
Designing the TPS54218 through Webench Power Designer
3.4.5
± 5V Transmit Supply Generation
3.4.6
System Clock Synchronization
3.4.7
Power and data output connector
3.4.8
System Current and Power Monitoring
4 Hardware, Software, Testing Requirements, and Test Results
4.1
Testing and Results
4.1.1
Test Setup
4.1.2
Test Results
4.1.2.1
High Voltage Power Supply
4.1.2.2
Output Ripple Measurement
4.1.2.3
Load Transient Test
4.1.2.4
Noise Measurement
4.1.2.5
Thermal Performance
4.1.2.6
Low Voltage Power Supply
4.1.2.6.1
Thermal Performance
4.1.2.6.2
FX3 Supply
5 Layout Guidelines
5.1
High-Voltage Supply Layout
5.2
USB Section Layout Guidelines
6 Design Files
6.1
Schematics
6.2
Bill of Materials
6.3
PCB Layout Recommendations
6.3.1
Layout Prints
6.4
Altium Project
6.5
Gerber Files
6.6
Assembly Drawings
7 Software Files
8 Related Documentation
8.1
Trademarks
8.2
Third-Party Products Disclaimer
9 About the Author
Features
Transformer less dual rail high-voltage (±80 V @ 25 mA) generation from 5 V i USB Type-C™ in single stage implementation to meet component height requirement of < 5 mm
Low ripple, low voltage supply for the front end and FPGA from a 5-V USB Type-C™ input
Compact board size (less than 90mm by 45 mm by 20mm)
End-to-end system efficiency – 80% running at full load
Receive data SNR > 55 dB (Noise floor below –90 dB)
EN/DISABLE supplies for power optimization and all rails can be synchronized to external clock
Accurate real time power consumption measurement using high performance instrumentation amplifier INA231
High-speed data acquisition over USB Type-C™ up to 4.2 Gbps