TIDUF99 November   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 TMS320F2800137
      2. 2.3.2 LMG2100R026
      3. 2.3.3 TMCS1127
      4. 2.3.4 LM5164
      5. 2.3.5 LM74610-Q1
      6. 2.3.6 AFE031
      7. 2.3.7 CC1352P7
  9. 3System Design Theory
    1. 3.1 MPPT Operation
    2. 3.2 Power Optimizer Function
      1. 3.2.1 Power Line Communication (PLC)
    3. 3.3 Four-Switch Buck-Boost Converter
    4. 3.4 Output Inductance
    5. 3.5 Input Capacitance
    6. 3.6 Current Sensor
      1. 3.6.1 Current Measurement Resolution
      2. 3.6.2 Current Sensor Power Dissipation
    7. 3.7 Switching Regulator
    8. 3.8 Bypass Circuit
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Software Requirements
    3. 4.3 Test Setup
    4. 4.4 Test Results
      1. 4.4.1 Short Mode Test Result
      2. 4.4.2 Switching Mode Test Result
      3. 4.4.3 Bypass Circuit Test Results
      4. 4.4.4 PLC Test Results
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author

LM5164

The LM5164 synchronous buck converter is designed to regulate over a wide input voltage range, minimizing the need for external surge suppression components. A minimum controllable on-time of 50ns facilitates large step-down conversion ratios, enabling the direct step-down from a 48V nominal input to low-voltage rails for reduced system complexity and design cost. The LM5164 operates during input voltage dips as low as 6V, at nearly 100% duty cycle if needed, making this device an excellent choice for wide input supply range industrial and high cell count battery pack applications.

With integrated high-side and low-side power MOSFETs, the LM5164 delivers up to 1A of output current. A constant on-time (COT) control architecture provides nearly constant switching frequency with excellent load and line transient response. Additional features of the LM5164 include ultra-low IQ and diode emulation mode operation for high light-load efficiency, remarkable peak and valley overcurrent protection, integrated VCC bias supply and bootstrap diode, precision enable and input UVLO, and thermal shutdown protection with automatic recovery. An open-drain PGOOD indicator provides sequencing, fault reporting, and output voltage monitoring. The LM5164 is available in a thermally-enhanced, 8-pin SO PowerPAD™ integrated circuit package. The 1.27mm pin pitch provides adequate spacing for high-voltage applications.