TIDUF99 November   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 TMS320F2800137
      2. 2.3.2 LMG2100R026
      3. 2.3.3 TMCS1127
      4. 2.3.4 LM5164
      5. 2.3.5 LM74610-Q1
      6. 2.3.6 AFE031
      7. 2.3.7 CC1352P7
  9. 3System Design Theory
    1. 3.1 MPPT Operation
    2. 3.2 Power Optimizer Function
      1. 3.2.1 Power Line Communication (PLC)
    3. 3.3 Four-Switch Buck-Boost Converter
    4. 3.4 Output Inductance
    5. 3.5 Input Capacitance
    6. 3.6 Current Sensor
      1. 3.6.1 Current Measurement Resolution
      2. 3.6.2 Current Sensor Power Dissipation
    7. 3.7 Switching Regulator
    8. 3.8 Bypass Circuit
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Software Requirements
    3. 4.3 Test Setup
    4. 4.4 Test Results
      1. 4.4.1 Short Mode Test Result
      2. 4.4.2 Switching Mode Test Result
      3. 4.4.3 Bypass Circuit Test Results
      4. 4.4.4 PLC Test Results
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author

AFE031

The AFE031 is a low-cost, integrated, power line communications (PLC) analog front-end (AFE) device that is capable of capacitive- or transformer-coupled connections to the power line while under the control of a DSP or microcontroller. This device is an excellent choice for driving low impedance lines that require up to 1.5A into reactive loads. The integrated receiver is able to detect signals down to 20μVRMS and is capable of a wide range of gain options to adapt to varying input signal conditions. This monolithic integrated circuit provides high reliability in demanding power line communications applications.

The AFE031 transmit power amplifier operates from a single supply in the range of 7V to 24V. At maximum output current, a wide output swing provides a 12VPP (IOUT = 1.5A) capability with a nominal 15V supply. The analog and digital signal processing circuitry operates from a single 3.3V power supply.