ZHCAA38E August   2021  – January 2023 TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F28384D , TMS320F28384S , TMS320F28386D , TMS320F28386S , TMS320F28388D , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P659DH-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659SH-Q1

 

  1.   将快速串行接口 (FSI) 应用于应用中的多个器件
  2.   商标
  3. 1FSI 模块简介
  4. 2FSI 应用
  5. 3握手机制
    1. 3.1 菊花链握手机制
    2. 3.2 星型握手机制
  6. 4发送和接收 FSI 数据帧
    1. 4.1 FSI 数据帧配置 API
    2. 4.2 开始传输数据帧
  7. 5菊花链拓扑测试
    1. 5.1 两器件 FSI 通信
      1. 5.1.1 CPU 控制
      2. 5.1.2 DMA 控件
      3. 5.1.3 硬件控制
    2. 5.2 三器件 FSI 通信
      1. 5.2.1 CPU/DMA 控制
      2. 5.2.2 硬件控制
        1. 5.2.2.1 三器件菊花链系统的偏斜补偿
          1. 5.2.2.1.1 CPU/DMA 控制
          2. 5.2.2.1.2 硬件控制
  8. 6星型拓扑测试
  9. 7通过 FSI 进行事件同步
    1. 7.1 引言
      1. 7.1.1 分布式系统的事件同步需求
      2. 7.1.2 采用 FSI 事件同步机制的解决方案
      3. 7.1.3 FSI 事件同步机制功能概述
    2. 7.2 C2000Ware FSI EPWM 同步示例
      1. 7.2.1 C2000Ware 示例工程的位置
      2. 7.2.2 软件配置综述
        1. 7.2.2.1 主控器件配置
        2. 7.2.2.2 节点器件配置
      3. 7.2.3 1 主控和 2 节点 F28002x 器件菊花链测试
        1. 7.2.3.1 硬件设置和配置
        2. 7.2.3.2 试验结果
      4. 7.2.4 1 主控和 8 节点 F28002x 器件菊花链测试
        1. 7.2.4.1 硬件设置和配置
        2. 7.2.4.2 试验结果
      5. 7.2.5 C2000 理论上的不确定性
    3. 7.3 FSI 事件同步的其他提示和用法
      1. 7.3.1 运行示例
      2. 7.3.2 目标配置文件
      3. 7.3.3 星型配置事件同步的用法
  10. 8参考文献
  11. 9修订历史记录

三器件菊花链系统的偏斜补偿

在利用数字隔离和差分收发器器件,或者信号布线长度不同的实际应用中,可以使用 FSI 接收器模块内的集成偏斜补偿块,来管理时钟信号和数据信号之间可能发生的信号偏斜。

菊花链示例嵌入了为三器件系统构建的偏斜补偿算法。此算法基于快速串行接口 (FSI) 偏斜补偿 中提供的函数和示例。如果必须使用示例中包含的偏斜补偿算法,则 fsi_ex_daisy_handshake_node 中的 NODE_POS 设置必须如下所示:

对于器件 2

#define NODE_POS                            1

对于器件 3

#define NODE_POS                            2

出于校准目的,每个器件都会分配到一个 ID。虽然实际校准以用户定义的频率进行,但器件之间的握手调用以极低的频率完成,以确保未补偿偏斜的影响可以忽略不计。

每个器件的偏斜可能与其他器件不同,这是时钟和数据线上的传播延迟差异造成的。这也意味着,当传输源变化时,由一个传输源执行的偏斜补偿可能不起作用。例如,在上述 CPU/DMA 控制模式下,器件 3 的传输源是器件 2 的 Tx 模块。但在硬件控制模式下,源是偏斜补偿后的器件 2 的 Rx 通道。下图中描绘了这部分内容。 因此,分别解释了 CPU/DMA 控制模式和硬件控制的算法。