ZHCAAE6B November   2018  – June 2021 DRV10866 , DRV10963 , DRV10964 , DRV10970 , DRV10974 , DRV10975 , DRV10983 , DRV10983-Q1 , DRV10987 , DRV11873 , DRV3205-Q1 , DRV3220-Q1 , DRV3245E-Q1 , DRV3245Q-Q1 , DRV8301 , DRV8302 , DRV8303 , DRV8304 , DRV8305 , DRV8305-Q1 , DRV8306 , DRV8307 , DRV8308 , DRV8312 , DRV8313 , DRV8320 , DRV8320R , DRV8323 , DRV8323R , DRV8332 , DRV8343-Q1 , DRV8350 , DRV8350R , DRV8353 , DRV8353R , DRV8412 , DRV8701 , DRV8702-Q1 , DRV8702D-Q1 , DRV8703-Q1 , DRV8703D-Q1 , DRV8704 , DRV8711 , DRV8800 , DRV8801 , DRV8801-Q1 , DRV8801A-Q1 , DRV8802 , DRV8802-Q1 , DRV8803 , DRV8804 , DRV8805 , DRV8806 , DRV8811 , DRV8812 , DRV8813 , DRV8814 , DRV8816 , DRV8818 , DRV8821 , DRV8823 , DRV8823-Q1 , DRV8824 , DRV8824-Q1 , DRV8825 , DRV8828 , DRV8829 , DRV8830 , DRV8832 , DRV8832-Q1 , DRV8833 , DRV8833C , DRV8834 , DRV8835 , DRV8836 , DRV8837 , DRV8837C , DRV8838 , DRV8839 , DRV8840 , DRV8841 , DRV8842 , DRV8843 , DRV8844 , DRV8846 , DRV8847 , DRV8848 , DRV8850 , DRV8860 , DRV8870 , DRV8871 , DRV8871-Q1 , DRV8872 , DRV8872-Q1 , DRV8873-Q1 , DRV8880 , DRV8881 , DRV8884 , DRV8885 , DRV8886 , DRV8886AT , DRV8889-Q1

 

  1.   商标
  2. 1接地优化
    1. 1.1 常用术语/连接
    2. 1.2 使用接地平面
      1. 1.2.1 两层板技术
    3. 1.3 常见问题
      1. 1.3.1 电容耦合和电感耦合
      2. 1.3.2 共模噪声和差模噪声
    4. 1.4 EMC 注意事项
  3. 2热特性概述
    1. 2.1 PCB 传导和对流
    2. 2.2 连续顶层散热焊盘
    3. 2.3 覆铜厚度
    4. 2.4 散热过孔连接
    5. 2.5 散热过孔宽度
    6. 2.6 热设计总结
  4. 3过孔
    1. 3.1 过孔电流容量
    2. 3.2 过孔布局建议
      1. 3.2.1 多过孔布局
      2. 3.2.2 过孔的放置
  5. 4通用布线方法
  6. 5大容量电容器和旁路电容器的放置
    1. 5.1 大容量电容器的放置
    2. 5.2 电荷泵电容器
    3. 5.3 旁路电容器/去耦电容器的放置
      1. 5.3.1 靠近电源
      2. 5.3.2 靠近功率级
      3. 5.3.3 靠近开关电流源
      4. 5.3.4 靠近电流感测放大器
      5. 5.3.5 靠近稳压器
  7. 6MOSFET 的放置和功率级布线
    1. 6.1 功率 MOSFET 的常见封装
      1. 6.1.1 DPAK
      2. 6.1.2 D2PAK
      3. 6.1.3 TO-220
      4. 6.1.4 8 引脚 SON
    2. 6.2 MOSFET 布局配置
    3. 6.3 功率级布局设计
      1. 6.3.1 开关节点
      2. 6.3.2 大电流环路路径
      3. 6.3.3 VDRAIN 感测引脚
  8. 7电流感测放大器布线
    1. 7.1 单个高侧分流器
    2. 7.2 单个低侧分流器
    3. 7.3 两相和三相分流放大器
    4. 7.4 元件选型
    5. 7.5 放置
    6. 7.6 布线
    7. 7.7 有用工具(网络节点和差分对)
    8. 7.8 输入和输出滤波器
    9. 7.9 注意事项
  9. 8参考文献
  10. 9修订历史记录

通用布线方法

在进行电机驱动器 PCB 设计时,请遵循以下通用布线方法:

  • 使栅极驱动布线尽可能宽并尽可能短。1oz 覆铜对应 20mil 的布线宽度,如果是大电流,可能需要更大的布线宽度。
    GUID-D42CAEAC-F471-4E82-A461-CEABAD1AAF91-low.gif图 4-1 DRV8323xEVM 栅极信号
  • 高侧栅极的信号布线应和开关节点布线尽可能靠近,从而最大限度减少电感、减小环路面积以及降低 dv/dt 开关引起噪声的可能性。
    GUID-1725196F-F1B1-4E48-B03E-ED5169F6BDB7-low.gif图 4-2 平行栅极布线
  • 不要使用直角布线。布线如有 90 度弯曲会产生阻抗,并会导致电流反射。当电机的相位切换时,急弯会引起电磁干扰 (EMI) 问题。圆形弯曲是比较理想的,但在实际设计中可能无法做到。拐角布线的最佳实践是使用钝角。图 4-3 所示为布线中的不同角度的示例。
    GUID-3EEEC200-88AA-40E5-9322-4CA6FF3F493A-low.gif图 4-3 直角布线
  • 从过孔切换到焊盘,特别是在输出引脚处布线从细到粗的部分。泪滴技术可降低信号转换的热应力,还能避免布线断裂,并使布线更具机械可靠性。泪滴技术适用于从小信号到穿孔焊盘的情况。
    GUID-0882EAB2-E1AD-4432-B8C3-C217E98FEF83-low.gif图 4-4 从过孔切换到焊盘
  • 在目标周围应以平行线对的方式布线,以避免由布线分离引起的差分阻抗和不连续性。这种方法对于电流感测放大器的信号很重要。
    GUID-44291D8D-7B77-4254-B66B-C5FA253F3A01-low.gif图 4-5 平行布线
  • 将无源器件(例如源匹配电阻或交流耦合电容器)放置在信号路径内,使它们彼此相邻。平行放置元件会产生更宽的布线间距。不建议将元件错开,因为这种布局会产生狭窄的区域。
    GUID-69C0F07F-63EE-49A6-97B4-3BB05FA61426-low.gif图 4-6 建议的元件放置方式
  • 将电路的模拟和数字部分单独接地是最简单和最有效的噪声抑制方法之一。
    GUID-6B5A48F3-9ECF-43F0-BB3C-10B87B17787D-low.gif图 4-7 模拟和数字接地分隔