ZHCAAE6B November   2018  – June 2021 DRV10866 , DRV10963 , DRV10964 , DRV10970 , DRV10974 , DRV10975 , DRV10983 , DRV10983-Q1 , DRV10987 , DRV11873 , DRV3205-Q1 , DRV3220-Q1 , DRV3245E-Q1 , DRV3245Q-Q1 , DRV8301 , DRV8302 , DRV8303 , DRV8304 , DRV8305 , DRV8305-Q1 , DRV8306 , DRV8307 , DRV8308 , DRV8312 , DRV8313 , DRV8320 , DRV8320R , DRV8323 , DRV8323R , DRV8332 , DRV8343-Q1 , DRV8350 , DRV8350R , DRV8353 , DRV8353R , DRV8412 , DRV8701 , DRV8702-Q1 , DRV8702D-Q1 , DRV8703-Q1 , DRV8703D-Q1 , DRV8704 , DRV8711 , DRV8800 , DRV8801 , DRV8801-Q1 , DRV8801A-Q1 , DRV8802 , DRV8802-Q1 , DRV8803 , DRV8804 , DRV8805 , DRV8806 , DRV8811 , DRV8812 , DRV8813 , DRV8814 , DRV8816 , DRV8818 , DRV8821 , DRV8823 , DRV8823-Q1 , DRV8824 , DRV8824-Q1 , DRV8825 , DRV8828 , DRV8829 , DRV8830 , DRV8832 , DRV8832-Q1 , DRV8833 , DRV8833C , DRV8834 , DRV8835 , DRV8836 , DRV8837 , DRV8837C , DRV8838 , DRV8839 , DRV8840 , DRV8841 , DRV8842 , DRV8843 , DRV8844 , DRV8846 , DRV8847 , DRV8848 , DRV8850 , DRV8860 , DRV8870 , DRV8871 , DRV8871-Q1 , DRV8872 , DRV8872-Q1 , DRV8873-Q1 , DRV8880 , DRV8881 , DRV8884 , DRV8885 , DRV8886 , DRV8886AT , DRV8889-Q1

 

  1.   商标
  2. 1接地优化
    1. 1.1 常用术语/连接
    2. 1.2 使用接地平面
      1. 1.2.1 两层板技术
    3. 1.3 常见问题
      1. 1.3.1 电容耦合和电感耦合
      2. 1.3.2 共模噪声和差模噪声
    4. 1.4 EMC 注意事项
  3. 2热特性概述
    1. 2.1 PCB 传导和对流
    2. 2.2 连续顶层散热焊盘
    3. 2.3 覆铜厚度
    4. 2.4 散热过孔连接
    5. 2.5 散热过孔宽度
    6. 2.6 热设计总结
  4. 3过孔
    1. 3.1 过孔电流容量
    2. 3.2 过孔布局建议
      1. 3.2.1 多过孔布局
      2. 3.2.2 过孔的放置
  5. 4通用布线方法
  6. 5大容量电容器和旁路电容器的放置
    1. 5.1 大容量电容器的放置
    2. 5.2 电荷泵电容器
    3. 5.3 旁路电容器/去耦电容器的放置
      1. 5.3.1 靠近电源
      2. 5.3.2 靠近功率级
      3. 5.3.3 靠近开关电流源
      4. 5.3.4 靠近电流感测放大器
      5. 5.3.5 靠近稳压器
  7. 6MOSFET 的放置和功率级布线
    1. 6.1 功率 MOSFET 的常见封装
      1. 6.1.1 DPAK
      2. 6.1.2 D2PAK
      3. 6.1.3 TO-220
      4. 6.1.4 8 引脚 SON
    2. 6.2 MOSFET 布局配置
    3. 6.3 功率级布局设计
      1. 6.3.1 开关节点
      2. 6.3.2 大电流环路路径
      3. 6.3.3 VDRAIN 感测引脚
  8. 7电流感测放大器布线
    1. 7.1 单个高侧分流器
    2. 7.2 单个低侧分流器
    3. 7.3 两相和三相分流放大器
    4. 7.4 元件选型
    5. 7.5 放置
    6. 7.6 布线
    7. 7.7 有用工具(网络节点和差分对)
    8. 7.8 输入和输出滤波器
    9. 7.9 注意事项
  9. 8参考文献
  10. 9修订历史记录

EMC 注意事项

电磁兼容性 (EMC) 主要取决于布局以及元件之间的电气连接。

每个信号的返回路径必须从资源流向产生电流环路的信号源。该线路环路将形成可辐射电磁能量的天线,电磁能量的大小由电流幅度、信号的重复频率和电流环路的几何面积决定。为了获得出色的 EMC 性能,建议尽量减少这些电流环路,图 1-6 展示了常见类型的电流环路。

GUID-615B1109-E4FC-4733-94D3-D43F88E6A2F2-low.gif图 1-6 电子系统中的电流路径

图 1-6 中的电源线路形成环路 A–C–D–B 和 A–E–F–B。系统运行所需的能量由这些线路传导。

环路 L-M-F-D、N-Q-P-F 和 G-H-J-K 由信号和控制组件组成。这些线路包围的区域通常很小(如果不考虑系统外的线路)。但是,必须在高频下考虑这些线路,因为它们经常传输会对EMC 性能产生影响的信号。

当连接器、接头或其他元件破坏接地平面时,也会形成电流环路。这会导致开关电流的高频分量在电路板周围传播得更远,并实际形成一个大环路。过孔也会发生这种情况,Topic Link Label3.2.2中对此进行了重点介绍