ZHCAAI7A october   2020  – march 2023 TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378S , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28384D , TMS320F28384S , TMS320F28386D , TMS320F28386S , TMS320F28388D , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P659DH-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659SH-Q1

 

  1.   摘要
  2.   商标
  3. 1引言
    1. 1.1 ADC 输入稳定的机制
    2. 1.2 稳定不足的症状
    3. 1.3 资源
      1. 1.3.1 TINA-TI 基于 SPICE 的模拟仿真程序
      2. 1.3.2 PSpice for TI 设计和仿真工具
      3. 1.3.3 TI 高精度实验室 - SAR ADC 输入驱动器设计系列
      4. 1.3.4 模拟工程师计算器
      5. 1.3.5 相关应用报告
      6. 1.3.6 TINA-TI ADC 输入模型
  4. 2输入稳定设计步骤
    1. 2.1 选择 ADC
    2. 2.2 查找最小运算放大器带宽和 RC 滤波器范围
      1. 2.2.1 选择类型
      2. 2.2.2 分辨率
      3. 2.2.3 Csh
      4. 2.2.4 满量程范围
      5. 2.2.5 采集时间
      6. 2.2.6 输出
      7. 2.2.7 计算器背后的数学原理
    3. 2.3 选择运算放大器
    4. 2.4 验证运算放大器模型
    5. 2.5 构建 ADC 输入模型
      1. 2.5.1 Vin
      2. 2.5.2 Voa、Voa_SS 和 Verror
      3. 2.5.3 Rs、Cs 和 Vcont
      4. 2.5.4 Ch、Ron 和 Cp
      5. 2.5.5 S+H 开关、放电开关、tacq 和 tdis
    6. 2.6 通过仿真优化 RC 滤波器值
    7. 2.7 执行最终仿真
    8. 2.8 输入设计工作表
  5. 3电路设计示例
    1. 3.1  选择 ADC
    2. 3.2  查找最小运算放大器带宽和 RC 滤波器范围
    3. 3.3  验证运算放大器模型
    4. 3.4  构建 ADC 输入模型
    5. 3.5  直流节点分析
    6. 3.6  通过仿真优化 RC 滤波器值(第 1 部分)
    7. 3.7  通过仿真优化 RC 滤波器值(第 2 部分)
    8. 3.8  通过仿真优化 RC 滤波器值(第 3 部分)
    9. 3.9  进一步改进
    10. 3.10 进一步仿真
    11. 3.11 已完成的工作表
  6. 4使用现有电路或额外限制
    1. 4.1 现有电路
      1. 4.1.1 电荷共享的简要概述
      2. 4.1.2 电荷共享示例
    2. 4.2 预选运算放大器
      1. 4.2.1 预选运算放大器示例
    3. 4.3 预选 Rs 和 Cs 值
      1. 4.3.1 ADC 采集时间分析解决方案
      2. 4.3.2 ADC 采集时间分析解决方案示例
  7. 5总结
  8. 6参考文献
  9. 7修订历史记录

ADC 输入稳定的机制

要将检测到的模拟电压转换为数字转换结果,ADC 必须首先准确地将施加的输入电压捕获到其采样保持电路 (S+H) 中。如图 1-1 所示,这需要在配置的采集窗口时间(也称为 S+H 时间)内将内部 ADC S+H 电容器 (Ch) 充电至所施加电压的某个可接受容差(通常为 0.5LSB)范围内。

GUID-37FEDD25-34F9-4E4D-A3BE-003BBD8FC904-low.gif图 1-1 ADC S+H 电容器的稳定

考虑到外部 ADC 驱动器电路的有限带宽和稳定时间以及内部 ADC S+H 电路的稳定时间,快速将 Ch 充电至所施加电压的过程会变得复杂。在图 1-1 中,驱动器显示为具有有限带宽的运算放大器 (OPA320),驱动器电路也有意放置了源电阻 (Rs) 并有意放置了源电容 (Cs),其有限的稳定时间由 RC 时间常数决定。请注意,其他电路拓扑可用于驱动 ADC,这些电路可能具有额外的元件,需要对这些元件进行建模以确保适当的稳定时间。这些元件可能包括无意寄生效应,例如传感器的输出阻抗或分压器的有效源电阻。从图 1-1 还可以看到,ADC 具有内部寄生开关电阻 (Ron)。这与 Ch 一起提供了一个会限制稳定速度的额外 RC 时间常数。