ZHCAB39E January   2022  – February 2022 TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S

 

  1.   商标
  2. 1引言
  3. 2PTO – PulseGen
    1. 2.1 PulseGen 实现概述
    2. 2.2 PulseGen 限制
    3. 2.3 PulseGen CLB 配置
    4. 2.4 PulseGen 输入和输出信号
  4. 3PTO – QepDiv
    1. 3.1 QepDiv 实现概述
    2. 3.2 QepDiv 限制
    3. 3.3 QepDiv 分频器设置和初始化
    4. 3.4 QepDiv CLB 配置
  5. 4PTO – Abs2Qep
    1. 4.1 Abs2Qep 芯片资源
    2. 4.2 Abs2Qep 工作原理
      1. 4.2.1 Abs2Qep 转换公式
      2. 4.2.2 Abs2Qep 转换示例
      3. 4.2.3 Abs2Qep 过零检测
    3. 4.3 Abs2Qep CLB 配置
      1. 4.3.1 Abs2Qep QEP-A/B 脉冲序列生成
      2. 4.3.2 Abs2Qep 停止锁存器
      3. 4.3.3 Abs2Qep 高级控制器 (HLC)
    4. 4.4 Abs2Qep 输入和输出信号
  6. 5PTO – QepOnClb QEP 解码器
    1. 5.1 QepOnClb 和 eQEP 的比较
    2. 5.2 QepOnClb 芯片资源
    3. 5.3 QepOnClb 工作原理
    4. 5.4 QepOnClb CLB 资源
      1. 5.4.1 QepOnClb QCLK 状态机
      2. 5.4.2 QepOnClb 方向解码
      3. 5.4.3 QepOnClb 错误检测
      4. 5.4.4 QepOnClb 仿真波形
  7. 6示例工程
    1. 6.1 硬件要求
    2. 6.2 安装 Code Composer Studio 和 C2000WARE-MOTORCONTROL-SDK™
    3. 6.3 导入并运行示例工程
    4. 6.4 PulseGen 示例
    5. 6.5 QepDiv 示例
    6. 6.6 Abs2Qep 示例
      1. 6.6.1 观察变量
      2. 6.6.2 测试信号
      3. 6.6.3 引脚用途和测试连接
    7. 6.7 QepOnClb 示例
      1. 6.7.1 观察变量
      2. 6.7.2 接头引脚连接
  8. 7库源代码和工程
    1. 7.1 查找库源代码
    2. 7.2 导入和构建库工程
    3. 7.3 PTO - PulseGen API
      1. 7.3.1 pto_pulsegen_runPulseGen
      2. 7.3.2 pto_startOperation
      3. 7.3.3 pto_pulsegen_setupPeriph
      4. 7.3.4 pto_pulsegen_reset
    4. 7.4 PTO - QepDiv API
      1. 7.4.1 pto_qepdiv_config
      2. 7.4.2 pto_startOperation
      3. 7.4.3 pto_qepdiv_setupPeriph
      4. 7.4.4 pto_qepdiv_reset
    5. 7.5 PTO - Abs2Qep API
      1. 7.5.1 Abs2Qep API 配置
      2. 7.5.2 pto_abs2qep_runPulseGen
      3. 7.5.3 pto_abs2qep_setupPeriph
      4. 7.5.4 pto_abs2qep_translatePosition
    6. 7.6 PTO - QepOnClb API
      1. 7.6.1 pto_qeponclb_setupPeriph
      2. 7.6.2 pto_qeponclb_initCLBQEP
      3. 7.6.3 pto_qeponclb_configMaxCounterPos
      4. 7.6.4 pto_qeponclb_enableCLBQEP
      5. 7.6.5 pto_qeponclb_resetCLBQEP
      6. 7.6.6 pto_qeponclb_getCounterVal
      7. 7.6.7 pto_qeponclb_getCLBQEPPos
      8. 7.6.8 pto_qeponclb_clearFIFOptr
  9. 8在工程中使用参考 API
    1. 8.1 将 PTO 支持添加到工程中
    2. 8.2 往返于 CLB 的路由
    3. 8.3 初始化步骤
      1. 8.3.1 PTO-PulseGen API 初始化
      2. 8.3.2 PTO-QepDiv API 初始化
      3. 8.3.3 PTO-Abs2Qep API 初始化
      4. 8.3.4 PTO-QepOnClb API 初始化
  10. 9参考文献
  11.   修订历史记录

pto_abs2qep_translatePosition

说明

该函数将绝对位置的变化转换为要加载到 CLB FIFO 中的等效 PTO 配置。相关信息包括:

  • 生成 QEP-A 和 QEP-B 脉冲所需的 QCLK 数量
  • 如果过零,则包括应在哪个 QCLK 边沿将 QEP-I 驱动为高电平和低电平的信息
  • 每个 QCLK 之间的 CLB 时钟数
  • 位置变化的方向。
图 7-1 Abs2Qep 转换函数

定义

    uint16_t 
        pto_abs2qep_translatePosition(
            uint32_t positionNew
        );

参数

输入:

  • positionNew - 由系统采样的新绝对位置。转换函数会将此值与前一个样片进行比较以确定位置变化。

返回:ptoDirection - 指示 PTO 的方向。

  • PTO_ABS2QEP_CLOCKWISE_PTO
  • PTO_ABS2QEP_COUNTERCLOCKWISE_PTO
注: 该函数将 PTO 配置直接加载到 HLC PULL FIFO 中。

使用

// Call to sample a new absolute position
    ....
// Translate change from previous position to PTO configuration
    ptoDirection = pto_abs2qep_translatePosition(absolutePosition);
    ....
// Start the last configuration
    pto_abs2qep_runPulseGen(ptoDirection);