ZHCABK1A February   2022  – March 2024 ADS1119 , ADS1120 , ADS1120-Q1 , ADS112C04 , ADS112U04 , ADS1130 , ADS1131 , ADS114S06 , ADS114S06B , ADS114S08 , ADS114S08B , ADS1158 , ADS1219 , ADS1220 , ADS122C04 , ADS122U04 , ADS1230 , ADS1231 , ADS1232 , ADS1234 , ADS1235 , ADS1235-Q1 , ADS124S06 , ADS124S08 , ADS1250 , ADS1251 , ADS1252 , ADS1253 , ADS1254 , ADS1255 , ADS1256 , ADS1257 , ADS1258 , ADS1258-EP , ADS1259 , ADS1259-Q1 , ADS125H01 , ADS125H02 , ADS1260 , ADS1260-Q1 , ADS1261 , ADS1261-Q1 , ADS1262 , ADS1263 , ADS127L01 , ADS130E08 , ADS131A02 , ADS131A04 , ADS131E04 , ADS131E06 , ADS131E08 , ADS131E08S , ADS131M02 , ADS131M03 , ADS131M04 , ADS131M06 , ADS131M08

 

  1.   1
  2.   摘要
  3.   商标
  4. 1电桥概述
  5. 2电桥结构
    1. 2.1 电桥拓扑结构中的有源元件
      1. 2.1.1 具有一个有源元件的电桥
        1. 2.1.1.1 使用电流激励在具有一个有源元件的电桥中降低非线性
      2. 2.1.2 在对面支路中具有两个有源元件的电桥
        1. 2.1.2.1 使用电流激励消除对面支路中具有两个有源元件的电桥中的非线性
      3. 2.1.3 在同一支路中具有两个有源元件的电桥
      4. 2.1.4 具有四个有源元件的电桥
    2. 2.2 应变仪和电桥结构
  6. 3电桥连接
    1. 3.1 比例式测量
    2. 3.2 四线电桥
    3. 3.3 六线电桥
  7. 4电桥测量的电气特性
    1. 4.1 电桥灵敏度
    2. 4.2 电桥电阻
    3. 4.3 输出共模电压
    4. 4.4 失调电压
    5. 4.5 满量程误差
    6. 4.6 非线性误差和迟滞
    7. 4.7 漂移
    8. 4.8 蠕变和蠕变恢复
  8. 5信号链设计注意事项
    1. 5.1 放大
      1. 5.1.1 仪表放大器
        1. 5.1.1.1 INA 架构和运行
        2. 5.1.1.2 INA 误差源
      2. 5.1.2 集成式 PGA
        1. 5.1.2.1 集成式 PGA 架构和运行
        2. 5.1.2.2 使用集成 PGA 的优点
    2. 5.2 噪声
      1. 5.2.1 ADC 噪声数据表
      2. 5.2.2 计算电桥测量系统的 NFC
    3. 5.3 通道扫描时间和信号带宽
      1. 5.3.1 噪声性能
      2. 5.3.2 ADC 转换延迟
      3. 5.3.3 数字滤波器频率响应
    4. 5.4 交流激励
    5. 5.5 校准
      1. 5.5.1 失调校准
      2. 5.5.2 增益校准
      3. 5.5.3 校准示例
  9. 6电桥测量电路
    1. 6.1 使用比例基准和单极低电压 (≤ 5V) 激励源的四线电阻式电桥测量
      1. 6.1.1 原理图
      2. 6.1.2 优缺点
      3. 6.1.3 参数和变量
      4. 6.1.4 设计说明
      5. 6.1.5 测量转换
      6. 6.1.6 通用寄存器设置
    2. 6.2 使用比例基准和单极低电压 (≤ 5V) 激励源的六线电阻式电桥测量
      1. 6.2.1 原理图
      2. 6.2.2 优缺点
      3. 6.2.3 参数和变量
      4. 6.2.4 设计说明
      5. 6.2.5 测量转换
      6. 6.2.6 通用的寄存器设置
    3. 6.3 使用伪比例基准和单极高电压 (> 5V) 激励源的四线电阻式电桥测量
      1. 6.3.1 原理图
      2. 6.3.2 优缺点
      3. 6.3.3 参数和变量
      4. 6.3.4 设计注意事项
      5. 6.3.5 测量转换
      6. 6.3.6 通用的寄存器设置
    4. 6.4 使用伪比例基准和非对称高电压 (> 5V) 激励源的四线电阻式电桥测量
      1. 6.4.1 原理图
      2. 6.4.2 优缺点
      3. 6.4.3 参数和变量
      4. 6.4.4 设计注意事项
      5. 6.4.5 测量转换
      6. 6.4.6 通用的寄存器设置
    5. 6.5 使用比例基准和电流激励的四线电阻式电桥测量
      1. 6.5.1 原理图
      2. 6.5.2 优缺点
      3. 6.5.3 参数和变量
      4. 6.5.4 设计注意事项
      5. 6.5.5 测量转换
      6. 6.5.6 通用寄存器设置
    6. 6.6 使用伪比例基准和单极低电压 (≤ 5V) 激励源,测量多个串联四线电阻式电桥
      1. 6.6.1 原理图
      2. 6.6.2 优缺点
      3. 6.6.3 参数和变量
      4. 6.6.4 设计说明
      5. 6.6.5 测量转换
      6. 6.6.6 通用的寄存器设置
    7. 6.7 使用带比例基准和单极低电压 (≤ 5V) 激励源的单通道 ADC 测量多个并联的四线电阻式电桥
      1. 6.7.1 原理图
      2. 6.7.2 优缺点
      3. 6.7.3 参数和变量
      4. 6.7.4 设计说明
      5. 6.7.5 测量转换
      6. 6.7.6 通用的寄存器设置
    8. 6.8 使用带比例基准和单极低电压 (≤ 5V) 激励源的多通道 ADC 测量多个并联的四线电阻式电桥
      1. 6.8.1 原理图
      2. 6.8.2 优缺点
      3. 6.8.3 参数和变量
      4. 6.8.4 设计说明
      5. 6.8.5 测量转换
      6. 6.8.6 通用的寄存器设置
  10. 7总结
  11. 8Revision History

放大

节 4.1所述,典型电桥的灵敏度为 1mV/V 至 3mV/V。在如此低的灵敏度情况下,通常需要选择 VEXCITATION 的最大值以尽可能提高电桥输出信号。例如,表 4-1 中的 VEXCITATION 最大值为 15V,电桥灵敏度为 2mV/V,得到的最大电桥输出信号为 30mV。这个电平相对较低的信号需要放大以实现精密测量。

但是,选择 VEXCITATION > AVDD 可能需要对基准或信号电压进行电平转换,以符合 ADC 输入限制,因为大多数 ADC 只支持 AVDD ≤ 5V。在这种情况下,应在无增益 ADC 前面使用外部仪表放大器 (INA) 来放大电桥信号,并设置放大器输出共模电压。

当 VEXCITATION ≤ AVDD 时,选择具有集成式低噪声可编程增益放大器 (PGA) 的 ADC 来降低系统噪声并提高动态范围。选择具有集成 PGA 的 ADC 还可简化信号链并减小 PCB 面积。

以下各小节详细说明了外部 INA 和集成 PGA 的操作和用例。