ZHCACF7A june   2021  – march 2023 TMS320F2800132 , TMS320F2800133 , TMS320F2800135 , TMS320F2800137 , TMS320F2800152-Q1 , TMS320F2800153-Q1 , TMS320F2800154-Q1 , TMS320F2800155 , TMS320F2800155-Q1 , TMS320F2800156-Q1 , TMS320F2800157 , TMS320F2800157-Q1 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378S , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P659DH-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659SH-Q1

 

  1.   摘要
  2.   商标
  3. 1引言
    1. 1.1 存储器串扰挑战
    2. 1.2 信号调节电路设计资源
      1. 1.2.1 TI 精密实验室 - SAR ADC 输入驱动器设计系列
      2. 1.2.2 模拟工程师计算器
      3. 1.2.3 相关应用报告
      4. 1.2.4 TINA-TI 基于 SPICE 的模拟仿真程序
      5. 1.2.5 PSPICE for TI
      6. 1.2.6 C2000 MCU 的 ADC 输入电路评估
      7. 1.2.7 C2000 ADC 的电荷共享驱动电路
  4. 2ADC 输入趋稳综述
    1. 2.1 ADC 输入趋稳的机制
    2. 2.2 稳定不足的症状
      1. 2.2.1 失真
      2. 2.2.2 存储器串扰
      3. 2.2.3 精度
    3. 2.3 C2000 ADC 架构
  5. 3问题说明
    1. 3.1 示例系统
    2. 3.2 S+H 趋稳分析
    3. 3.3 电荷共享分析
    4. 3.4 问题总结
  6. 4专用 ADC 采样
    1. 4.1 专用 ADC 概念
    2. 4.2 专用 ADC 的趋稳机制
    3. 4.3 专用 ADC 的设计流程
    4. 4.4 专用 ADC 电路的稳定性能仿真
  7. 5预采样 VREFLO
    1. 5.1 VREFLO 采样概念
    2. 5.2 VREFLO 采样方法误差的属性
    3. 5.3 增益误差补偿
      1. 5.3.1 确定补偿系数的方法
    4. 5.4 VREFLO 采样设计流程
    5. 5.5 讨论 VREFLO 采样序列
  8. 6总结
  9. 7参考文献
  10. 8修订历史记录

精度

输入建立不适当而引入的误差通常无法通过过采样和取平均值来校准或减少。因此,即使检测到的输入信号是低频甚至是直流信号,关注绝对采样精度的应用也需要确保适当的 ADC 输入建立。