ZHCADC4A September   2011  – March 2014

 

  1.   1
  2. 简介
    1. 1.1  ABI - C6000
    2. 1.2  范围
    3. 1.3  ABI 变体
    4. 1.4  工具链和互操作性
    5. 1.5 
    6. 1.6  目标文件的类型
    7. 1.7 
    8. 1.8  C6000 架构概述
    9. 1.9  参考文档
    10. 1.10 代码片段表示法
  3. 数据表示
    1. 2.1 基本类型
    2. 2.2 寄存器中的数据
    3. 2.3 存储器中的数据
    4. 2.4 复数类型
    5. 2.5 结构体和联合体
    6. 2.6 数组
    7. 2.7 位字段
      1. 2.7.1 易失性位字段
    8. 2.8 枚举类型
  4. 调用约定
    1. 3.1 调用和返回
      1. 3.1.1 返回地址计算
      2. 3.1.2 调用指令
      3. 3.1.3 返回指令
      4. 3.1.4 流水线约定
      5. 3.1.5 弱函数
    2. 3.2 寄存器惯例
    3. 3.3 实参传递
    4. 3.4 返回值
    5. 3.5 通过引用传递并返回的结构体和联合体
    6. 3.6 编译器辅助函数的约定
    7. 3.7 段间调用的暂存寄存器
    8. 3.8 设置 DP
  5. 数据分配和寻址
    1. 4.1 数据段和数据区段
    2. 4.2 静态数据的分配和寻址
      1. 4.2.1 静态数据的寻址方法
        1. 4.2.1.1 near DP 相对寻址
        2. 4.2.1.2 Far DP 相对寻址
        3. 4.2.1.3 绝对寻址
        4. 4.2.1.4 GOT 间接寻址
        5. 4.2.1.5 PC 相对寻址
      2. 4.2.2 静态数据的放置约定
        1. 4.2.2.1 放置的抽象约定
        2. 4.2.2.2 寻址的抽象约定
        3. 4.2.2.3 链接器要求
      3. 4.2.3 静态数据的初始化
    3. 4.3 自动变量
    4. 4.4 帧布局
      1. 4.4.1 栈对齐
      2. 4.4.2 寄存器保存顺序
        1. 4.4.2.1 大端字节序对交换
        2. 4.4.2.2 示例
      3. 4.4.3 DATA_MEM_BANK
      4. 4.4.4 C64x+ 特定的堆栈布局
        1. 4.4.4.1 _ _C6000_push_rts 布局
        2. 4.4.4.2 紧凑帧布局
    5. 4.5 堆分配对象
  6. 代码分配和寻址
    1. 5.1 计算代码标签的地址
      1. 5.1.1 代码的绝对寻址
      2. 5.1.2 PC 相对寻址
      3. 5.1.3 同一段内的 PC 相对寻址
      4. 5.1.4 短偏移 PC 相对寻址 (C64x)
      5. 5.1.5 基于 GOT 的代码寻址
    2. 5.2 分支
    3. 5.3 调用
      1. 5.3.1 直接 PC 相对调用
      2. 5.3.2 Far Call Trampoline
      3. 5.3.3 间接调用
    4. 5.4 寻址紧凑指令
  7. 动态链接的寻址模型
    1. 6.1 术语和概念
    2. 6.2 动态链接机制概述
    3. 6.3 DSO 和 DLL
    4. 6.4 抢占
    5. 6.5 PLT 条目
      1. 6.5.1 直接调用导入函数
      2. 6.5.2 通过绝对地址寻址的 PLT 条目
      3. 6.5.3 通过 GOT 寻址的 PLT 条目
    6. 6.6 全局偏移表
      1. 6.6.1 使用 Near DP 相对寻址的基于 GOT 的引用
      2. 6.6.2 使用 Far DP 相对寻址的基于 GOT 的引用
    7. 6.7 DSBT 模型
      1. 6.7.1 导出函数的进入/退出序列
      2. 6.7.2 避免在内部函数中使用 DP 负载
      3. 6.7.3 函数指针
      4. 6.7.4 中断
      5. 6.7.5 与非 DSBT 代码的兼容性
    8. 6.8 动态链接的性能影响
  8. 线程局部存储分配和寻址
    1. 7.1 关于多线程和线程局部存储
    2. 7.2 术语和概念
    3. 7.3 用户界面
    4. 7.4 ELF 目标文件表示
    5. 7.5 TLS 访问模型
      1. 7.5.1 C6x Linux TLS 模型
        1. 7.5.1.1 通用动态 TLS 访问模型
        2. 7.5.1.2 局部动态 TLS 访问模型
        3. 7.5.1.3 初始可执行文件 TLS 访问模型
          1. 7.5.1.3.1 线程指针
          2. 7.5.1.3.2 初始可执行文件 TLS 寻址
        4. 7.5.1.4 局部可执行文件 TLS 访问模型
      2. 7.5.2 静态可执行文件 TLS 模型
        1. 7.5.2.1 静态可执行文件寻址
        2. 7.5.2.2 静态可执行文件 TLS 运行时架构
        3. 7.5.2.3 静态可执行文件 TLS 分配
          1. 7.5.2.3.1 TLS 初始化映像分配
          2. 7.5.2.3.2 主线程的 TLS 分配
          3. 7.5.2.3.3 线程库的 TLS 区域分配
        4. 7.5.2.4 静态可执行文件 TLS 初始化
          1. 7.5.2.4.1 主线程的 TLS 初始化
          2. 7.5.2.4.2 线程库进行 TLS 初始化
        5. 7.5.2.5 线程指针
      3. 7.5.3 裸机动态链接 TLS 模型
        1. 7.5.3.1 用于裸机动态链接的默认 TLS 寻址
        2. 7.5.3.2 TLS 块创建
    6. 7.6 线程局部符号解析和弱引用
      1. 7.6.1 通用和局部动态 TLS 弱引用寻址
      2. 7.6.2 初始和局部可执行文件 TLS 弱引用寻址
      3. 7.6.3 静态可执行文件和裸机动态 TLS 模型弱引用
  9. 辅助函数 API
    1. 8.1 浮点行为
    2. 8.2 C 辅助函数 API
    3. 8.3 辅助函数的特殊寄存器约定
    4. 8.4 复数类型的辅助函数
    5. 8.5 C99 的浮点辅助函数
  10. 标准 C 库 API
    1. 9.1  保留符号
    2. 9.2  <assert.h> 实现
    3. 9.3  <complex.h> 实现
    4. 9.4  <ctype.h> 实现
    5. 9.5  <errno.h> 实现
    6. 9.6  <float.h> 实现
    7. 9.7  <inttypes.h> 实现
    8. 9.8  <iso646.h> 实现
    9. 9.9  <limits.h> 实现
    10. 9.10 <locale.h> 实现
    11. 9.11 <math.h> 实现
    12. 9.12 <setjmp.h> 实现
    13. 9.13 <signal.h> 实现
    14. 9.14 <stdarg.h> 实现
    15. 9.15 <stdbool.h> 实现
    16. 9.16 <stddef.h> 实现
    17. 9.17 <stdint.h> 实现
    18. 9.18 <stdio.h> 实现
    19. 9.19 <stdlib.h> 实现
    20. 9.20 <string.h> 实现
    21. 9.21 <tgmath.h> 实现
    22. 9.22 <time.h> 实现
    23. 9.23 <wchar.h> 实现
    24. 9.24 <wctype.h> 实现
  11. 10C++ ABI
    1. 10.1  限制 (GC++ABI 1.2)
    2. 10.2  导出模板 (GC++ABI 1.4.2)
    3. 10.3  数据布局(GC++ABI 第 2 章)
    4. 10.4  初始化保护变量 (GC++ABI 2.8)
    5. 10.5  构造函数返回值 (GC++ABI 3.1.5)
    6. 10.6  一次性构建 API (GC++ABI 3.3.2)
    7. 10.7  控制对象构造顺序 (GC++ ABI 3.3.4)
    8. 10.8  还原器 API (GC++ABI 3.4)
    9. 10.9  静态数据 (GC++ ABI 5.2.2)
    10. 10.10 虚拟表和键函数 (GC++ABI 5.2.3)
    11. 10.11 回溯表位置 (GC++ABI 5.3)
  12. 11异常处理
    1. 11.1  概述
    2. 11.2  PREL31 编码
    3. 11.3  异常索引表 (EXIDX)
      1. 11.3.1 指向行外 EXTAB 条目的指针
      2. 11.3.2 EXIDX_CANTUNWIND
      3. 11.3.3 内联 EXTAB 条目
    4. 11.4  异常处理指令表 (EXTAB)
      1. 11.4.1 EXTAB 通用模型
      2. 11.4.2 EXTAB 紧凑模型
      3. 11.4.3 个性化例程
    5. 11.5  回溯指令
      1. 11.5.1 通用序列
      2. 11.5.2 字节编码展开指令
      3. 11.5.3 24 位展开编码
    6. 11.6  描述符
      1. 11.6.1 类型标识符编码
      2. 11.6.2 作用域
      3. 11.6.3 Cleanup 描述符
      4. 11.6.4 catch 描述符
      5. 11.6.5 函数异常规范 (FESPEC) 描述符
    7. 11.7  特殊段
    8. 11.8  与非 C++ 代码交互
      1. 11.8.1 EXIDX 条目自动生成
      2. 11.8.2 手工编码的汇编函数
    9. 11.9  与系统功能交互
      1. 11.9.1 共享库
      2. 11.9.2 覆盖块
      3. 11.9.3 中断
    10. 11.10 TI 工具链中的汇编语言运算符
  13. 12DWARF
    1. 12.1 DWARF 寄存器名称
    2. 12.2 调用帧信息
    3. 12.3 供应商名称
    4. 12.4 供应商扩展
  14. 13ELF 目标文件(处理器补充)
    1. 13.1 注册供应商名称
    2. 13.2 ELF 标头
    3. 13.3
      1. 13.3.1 段索引
      2. 13.3.2 段类型
      3. 13.3.3 扩展段标头属性
      4. 13.3.4 子段
      5. 13.3.5 特殊段
      6. 13.3.6 段对齐
    4. 13.4 符号表
      1. 13.4.1 符号类型
      2. 13.4.2 通用块符号
      3. 13.4.3 符号名称
      4. 13.4.4 保留符号名称
      5. 13.4.5 映射符号
    5. 13.5 重定位
      1. 13.5.1 重定位类型
      2. 13.5.2 重定位操作
      3. 13.5.3 未解析的弱引用的重定位
  15. 14ELF 程序加载和动态链接(处理器补充)
    1. 14.1 程序标头
      1. 14.1.1 基址
      2. 14.1.2 段内容
      3. 14.1.3 绑定段和只读段
      4. 14.1.4 线程局部存储
    2. 14.2 程序加载
    3. 14.3 动态链接
      1. 14.3.1 程序解释器
      2. 14.3.2 动态段
      3. 14.3.3 共享对象依赖关系
      4. 14.3.4 全局偏移量表
      5. 14.3.5 过程链接表
      6. 14.3.6 抢占式
      7. 14.3.7 初始化和终止
    4. 14.4 裸机动态链接模型
      1. 14.4.1 文件类型
      2. 14.4.2 ELF 标识
      3. 14.4.3 可见性和绑定
      4. 14.4.4 数据寻址
      5. 14.4.5 代码寻址
      6. 14.4.6 动态信息
  16. 15Linux ABI
    1. 15.1  文件类型
    2. 15.2  ELF 标识
    3. 15.3  程序标头和段
    4. 15.4  数据寻址
      1. 15.4.1 数据区段基表 (DSBT)
      2. 15.4.2 全局偏移量表 (GOT)
    5. 15.5  代码寻址
    6. 15.6  延迟绑定
    7. 15.7  可见性
    8. 15.8  抢占式
    9. 15.9  “作为自有导入”占先
    10. 15.10 程序加载
    11. 15.11 动态信息
    12. 15.12 初始化和终止函数
    13. 15.13 Linux 模型摘要
  17. 16符号版本控制
    1. 16.1 ELF 符号版本控制概述
    2. 16.2 版本段标识
  18. 17构建属性
    1. 17.1 C6000 ABI 构建属性子段
    2. 17.2 C6000 构建属性标签
  19. 18复制表和变量初始化
    1. 18.1 复制表格式
    2. 18.2 压缩的数据格式
      1. 18.2.1 RLE
      2. 18.2.2 LZSS 格式
    3. 18.3 变量初始化
  20. 19扩展程序标头属性
    1. 19.1 编码
    2. 19.2 属性标签定义
    3. 19.3 扩展程序标头属性段格式
  21. 20修订历史记录

全局偏移表

完全位置无关意味着代码与自身位置无关,与自身数据的位置以及任何导入代码或数据的位置无关,无需在加载时进行重定位修补。在此上下文中,“自身”一词表示与引用同属于相同的静态链接单元。我们来看一看每种情况意味着什么:

  • 引用自身代码(节 5.1):必须使用 PC 相对寻址或基于 GOT 的寻址。不能使用绝对地址。这种情况会影响蹦床函数、switch 表和返回地址的计算。
  • 引用自身数据(节 4.2):必须使用 DP 相对寻址、PC 相对寻址或基于 GOT 的寻址。不能使用绝对地址。通常,必须在编译时做出选择。这种情况会影响对 near 和 far 数据的引用。
  • 引用导入代码:不能使用绝对地址或 PC 相对地址。此情况适用于 PLT 条目中生成的调用。
  • 引用导入数据:不能使用绝对地址或 DP 相对地址。此情况适用于对导入数据的任何引用。

为避免将位置相关绝对地址编码到代码段中,它们会生成到称为全局偏移表 (GOT) 的表中,该表是每个静态链接单元的数据段的一部分。程序不直接访问对象,而是从 GOT 读取符号的地址并间接对其寻址。GOT 是数据段的一部分,始终使用静态链接时固定的偏移量来进行 DP 相对寻址。它由链接器生成,以响应编译器发出的特殊 GOT 生成重定位。当地址已知时,GOT 中的地址会在动态链接时得到修补。

基于 GOT 的访问涉及两个存储器引用:一个从 GOT 加载地址,另一个引用变量本身。第一个引用将访问 GOT 自身,本质上与正常的 DP 相对数据访问相同(请参阅节 4.2.1)。绝大多数时候,我们期望 GOT 位于 near DP 段中,因此可以使用 near DP 相对寻址进行访问。