ZHCS810H January   2012  – February 2018 DS125DF410

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     典型应用图
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Device Data Path Operation
      2. 7.3.2 Signal Detect
      3. 7.3.3 CTLE
      4. 7.3.4 DFE
      5. 7.3.5 Clock and Data Recovery
      6. 7.3.6 Output Driver
      7. 7.3.7 Device Configuration
        1. 7.3.7.1 Rate and Subrate Setting
    4. 7.4 Device Functional Modes
      1. 7.4.1 SMBus Master Mode and SMBus Slave Mode
      2. 7.4.2 Address Lines <ADDR_[3:0]>
      3. 7.4.3 SDA and SDC
      4. 7.4.4 Standards-Based Modes
        1. 7.4.4.1 Ref_mode 3 Mode (Reference Clock Required)
        2. 7.4.4.2 False Lock Detector Setting
        3. 7.4.4.3 Reference Clock In
        4. 7.4.4.4 Reference Clock Out
        5. 7.4.4.5 Driver Output Voltage
        6. 7.4.4.6 Driver Output De-Emphasis
        7. 7.4.4.7 Driver Output Rise/Fall Time
        8. 7.4.4.8 INT
        9. 7.4.4.9 LOCK_3, LOCK_2, LOCK_1, and LOCK_0
    5. 7.5 Programming
      1. 7.5.1  SMBus Strap Observation
      2. 7.5.2  Device Revision and Device ID
      3. 7.5.3  Control/Shared Register Reset
      4. 7.5.4  Interrupt Channel Flag Bits
      5. 7.5.5  SMBus Master Mode Control Bits
      6. 7.5.6  Resetting Individual Channels of the Retimer
      7. 7.5.7  Interrupt Status
      8. 7.5.8  Overriding the CTLE Boost Setting
      9. 7.5.9  Overriding the VCO Search Values
      10. 7.5.10 Overriding the Output Multiplexer
      11. 7.5.11 Overriding the VCO Divider Selection
      12. 7.5.12 Using the PRBS Generator
      13. 7.5.13 Using the Internal Eye Opening Monitor
      14. 7.5.14 Overriding the DFE Tap Weights and Polarities
      15. 7.5.15 Enabling Slow Rise/Fall Time on the Output Driver
      16. 7.5.16 Inverting the Output Polarity
      17. 7.5.17 Overriding the Figure of Merit for Adaptation
      18. 7.5.18 Setting the Rate and Subrate for Lock Acquisition
      19. 7.5.19 Setting the Adaptation/Lock Mode
      20. 7.5.20 Initiating Adaptation
      21. 7.5.21 Setting the Reference Enable Mode
      22. 7.5.22 Overriding the CTLE Settings Used for CTLE Adaptation
      23. 7.5.23 Setting the Output Differential Voltage
      24. 7.5.24 Setting the Output De-Emphasis Setting
    6. 7.6 Register Maps
      1. 7.6.1 Register Information
      2. 7.6.2 Bit Fields in the Register Set
      3. 7.6.3 Writing to and Reading from the Control/Shared Registers
      4. 7.6.4 Channel Select Register
      5. 7.6.5 Reading to and Writing from the Channel Registers
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 文档支持
      1. 11.1.1 相关文档
    2. 11.2 商标
    3. 11.3 静电放电警告
    4. 11.4 Glossary
  12. 12机械、封装和可订购信息

Using the Internal Eye Opening Monitor

Register 0x11, bits 7:6 and bit 5, Register 0x22, bit 7, Register 0x24, bit 7 and bit 0, Register 0x25, Register 0x26, Register 0x27, Register 0x28, Register 0x2a and Register 0x3e, bit 7

The DS125DF410 includes an internal eye opening monitor. The eye opening monitor is used by the retimer to compute a figure of merit for automatic adaptation of the CTLE and the DFE. It can also be controlled and queried through the SMBus by a system controller.

The eye opening monitor produces error hit counts for settable phase and voltage offsets of the comparator in the retimer. This is similar to the way many Bit Error Rate Test Sets measure eye opening. At each phase and amplitude offset setting, the eye opening monitor determines the nominal bit value (“0” or “1”) using its primary comparator. This is the bit value that is resynchronized to the recovered clock and presented at the output of the DS125DF410. The eye opening monitor also determines the bit value detected by the offset comparator. This information yields an eye contour. Here's how this works.

If the offset comparator is offset in voltage by an amount larger than the vertical eye opening, for example, then the offset comparator will always decide that the current bit has a bit value of “0”. When the bit is really a “1”, as determined by the primary comparator, this is considered a bit error. The number of bit errors is counted for a settable interval at each setting of the offset phase and voltage of the offset comparator. These error counts can be read from registers 0x25 and 0x26 for sequential phase and voltage offsets. These error counts for all phase and voltage offsets form a 64 X 64 point array. A surface or contour plot of the error hit count versus phase and voltage offset produces an eye diagram, which can be plotted by external software.

The eye opening monitor works in two modes. In the first, only the horizontal and vertical eye openings are measured. The eye opening monitor first sweeps its variable-phase clock through one unit interval with the comparison voltage set to the mid point of the signal. This determines the midpoint of the horizontal eye opening. The eye opening monitor then sets its variable phase clock to the midpoint of the horizontal eye opening and sweeps its comparison voltage. These two measurements determine the horizontal and vertical eye openings. The horizontal eye opening value is read from register 0x27 and the vertical eye opening from register 0x28. Both values are single byte values.

The measurement of horizontal and vertical eye opening is very fast. The speed of this measurement makes it useful for determining the adaptation figure of merit. In normal operation, the HEO and VEO are automatically measured periodically to determine whether the DS125DF410 is still in lock. Reading registers 0x27 and 0x28 will yield the most-recently measured HEO and VEO values.

In normal operation, the eye monitor circuitry is powered down most of the time to save power. When the eye is to be measured under external control, it must first be enabled by writing a 0 to bit 5 of register 0x11. The default value of this bit is 1, which powers down the eye monitor except when it is powered-up periodically by the CDR state machine and used to test CDR lock. The eye monitor must be powered up to measure the eye under external SMBus control.

Bits 7:6 of register 0x11 are also used during eye monitor operation to set the EOM voltage range. This is described below. A single write to register 0x11 can set both bit 5 and bits 7:6 in one operation.

Register 0x3e, bit 7, enables horizontal and vertical eye opening measurements as part of the lock validation sequence. When this bit is set, the CDR state machine periodically uses the eye monitor circuitry to measure the horizontal and vertical eye opening. If the eye openings are too small, according to the pre-determined thresholds in register 0x6a, then the CDR state machine declares lock loss and begins the lock acquisition process again. For SMBus acquisition of the internal eye, this lock monitoring function must be disabled. Prior to overriding the EOM by writing a 1 to bit 0 of register 0x24, disable the lock monitoring function by writing a 0 to bit 7 of register 0x3e. Once the eye has been acquired, you can reinstate HEO and VEO lock monitoring by once again writing a 1 to bit 7 of register 0x3e.

Under external SMBus control, the eye opening monitor can be programmed to sweep through all its 64 states of phase and voltage offset autonomously. This mode is initiated by setting register 0x24, bit 7, the fast_eom mode bit. Register 0x22, bit 7, the eom_ov bit, should be cleared in this mode.

When the fast_eom bit is set, the eye opening monitor operation is initiated by setting bit 0 of register 0x24, which is self-clearing. As soon as this bit is set, the eye opening monitor begins to acquire eye data. The results of the eye opening monitor error counter are stored in register 0x25 and 0x26. In this mode the eye opening monitor results can be obtained by repeated multi-byte reads from register 0x25. It is not necessary to read from register 0x26 for a multi-byte read. As soon as the eight most significant bits are read from register 0x25, the eight least significant bits for the current setting are loaded into register 0x25 and they can be read immediately. As soon as the read of the eight most significant bits has been initiated, the DS125DF410 sets its phase and voltage offsets to the next setting and starts its error counter again. The result of this is that the data from the eye opening monitor is available as quickly as it can be read over the SMBus with no further register writes required. The external controller just reads the data from the DS125DF410 over the SMBus as fast as it can. When all the data has been read, the DS125DF410 clears the eom_start bit.

If multi-byte reads are not used, meaning that the device is addressed each time a byte is read from it, then it is necessary to read register 0x25 to get the MSB (the eight most significant bits) and register 0x26 to get the LSB (the eight least significant bits) of the current eye monitor measurement. Again, as soon as the read of the MSB has been initiated, the DS125DF410 sets its phase and voltage offsets to the next setting and starts its error counter again. In this mode both registers 0x25 and 0x26 must be read in order to get the eye monitor data. The eye monitor data for the next set of phase and voltage offsets will not be loaded into registers 0x25 and 0x26 until both registers have been read for the current set of phase and voltage offsets.

In all eye opening monitor modes, the amount of time during which the eye opening monitor accumulates eye opening data can be set by the value of register 0x2a. In general, the greater this value the longer the accumulation time. When this value is set to its maximum possible value of 0xff, the maximum number of samples acquired at each phase and amplitude offset is approximately 218. Even with this setting, the eye opening monitor values can be read from the SMBus with no delay. The eye opening monitor operation is sufficiently fast that the SMBus read operation cannot outrun it.

The eye opening is measured at the input to the data comparator. At this point in the data path, a significant amount of gain has been applied to the signal by the CTLE. In many cases, the vertical eye opening as measured by the EOM will be on the order of 400 to 500 mV peak-to-peak. The secondary comparator, which is used to measure the eye opening, has an adjustable voltage range from ±100 mV to ±400 mV. The EOM voltage range is normally set by the CDR state machine during lock and adaptation, but the range can be overridden by setting bit 6 to 0 of register 0x2C, so the voltage range can scale with the values in register 0x11, bits [7:6]. The values of this code and the corresponding EOM voltage ranges are shown in Table 8.

Table 8. EOM Voltage Range vs Bits 7:6 of Register 0x11

VALUE in BITS 7:6 of REGISTER 0x11 EOM VOLTAGE RANGE (± mV)
0x0 ±100
0x1 ±200
0x2 ±300
0x3 ±400

Note that the voltage ranges shown in Table 8 are the voltage ranges of the signal at the input to the data path comparator. These values are not directly equivalent to any observable voltage measurements at the input to the DS125DF410 . Note also that if the EOM voltage range is set too small the voltage sweep of the secondary comparator may not be sufficient to capture the vertical eye opening. When this happens the eye boundaries will be outside the vertical voltage range of the eye measurement.

To summarize, the procedure for reading the eye monitor data from the DS125DF410 is shown below.

  1. Select the DS125DF410 channel to be used for the eye monitor measurement by writing the channel select register, register 0xff, with the appropriate value as shown in Table 15. if the correct channel register set is already selected, this step may be skipped.
  2. Disable the HEO and VEO lock monitoring function by writing a 0 to bit 7 of register 0x3e.
  3. Select the eye monitor voltage range by setting bits 7:6 of register 0x11 according to the values in Table 8. The CDR state machine will have set this range during lock acquisition, but it may be necessary to change it to capture the entire vertical eye extent.
  4. Power up the eye monitor circuitry by clearing bit 5 of register 0x11. Normally the eye monitor circuitry is powered up periodically by the CDR state machine. Clearing bit 5 of register 0x11 enables the eye monitor circuitry unconditionally. This bit should be set again once the eye acquisition is complete. Clearing bit 5 and setting bits 7:6 of register 0x11 as desired can be combined into a single register write if desired.
  5. Clear bit 7 of register 0x22. This is the eye monitor override bit. It is cleared by default, so you may not need to change it.
  6. Set bit 7 of register 0x24. This is the fast eye monitor enable bit.
  7. Set bit 1 of register 0x24. This initiates the automatic fast eye monitor measurement. This bit can be set at the same time a bit 7 of register 0x24 if desired.
  8. Read the data array from the DS125DF410. This can be accomplished in two ways.
    • If you are using multi-byte reads, address the DS125DF410 to read from register 0x25. Continue to read from this register without addressing the device again until you have read all the data desired. The read operation can be interrupted by addressing the device again and then resumed by reading once again from register 0x25.
    • If you are not using multi-byte reads, then read the MSB for each phase and amplitude offset setting from register 0x25 and the LSB for each setting from register 0x26. In this mode, you address the device each time you want to read a new byte.
  9. In either mode, the first four bytes do not contain valid data. These should be discarded.
  10. Continue reading eye monitor data until you have read the entire 64 X 64 array.
  11. Clear bit 7 of register 0x24. This disables fast eye monitor mode.
  12. Set bit 5 of register 0x11. This will return control of the eye monitor circuitry to the CDR state machine.
  13. Set bit 7 of register 0x3e. This re-enables the HEO and VEO lock monitoring.