ZHCSDS7A May   2015  – June 2015 LDC1101

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 简化电路原理图
  5. 修订历史记录
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Digital Interface
    7. 7.7 Timing Requirements
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Sensor Driver
    4. 8.4 Device Functional Modes
      1. 8.4.1 Measurement Modes
      2. 8.4.2 RP+L Measurement Mode
        1. 8.4.2.1 RPMIN and RPMAX
        2. 8.4.2.2 Programmable Internal Time Constants
        3. 8.4.2.3 RP+L Mode Measurement Sample Rate
      3. 8.4.3 High Resolution L (LHR) Measurement Mode
      4. 8.4.4 Reference Count Setting
      5. 8.4.5 L-Only Measurement Operation
      6. 8.4.6 Minimum Sensor Frequency and Watchdog Setting
      7. 8.4.7 Low Power Modes
        1. 8.4.7.1 Shutdown Mode
        2. 8.4.7.2 Sleep Mode
      8. 8.4.8 Status Reporting
      9. 8.4.9 Switch Functionality and INTB Reporting
    5. 8.5 Programming
      1. 8.5.1 SPI Programming
    6. 8.6 Register Maps
      1. 8.6.1  Individual Register Listings
      2. 8.6.2  Register RP_SET (address = 0x01) [reset = 0x07]
      3. 8.6.3  Register TC1 (address = 0x02) [reset = 0x90]
      4. 8.6.4  Register TC2 (address = 0x03) [reset = 0xA0]
      5. 8.6.5  Register DIG_CONF (address = 0x04) [reset = 0x03]
      6. 8.6.6  Register ALT_CONFIG (address = 0x05) [reset = 0x00]
      7. 8.6.7  Register RP_THRESH_HI_LSB (address = 0x06) [reset = 0x00]
      8. 8.6.8  Register RP_THRESH_HI_MSB (address = 0x07) [reset = 0x00]
      9. 8.6.9  Register RP_THRESH_LO_LSB (address = 0x08) [reset = 0x00]
      10. 8.6.10 Register RP_THRESH_LO_MSB (address = 0x09) [reset = 0x00]
      11. 8.6.11 Register INTB_MODE (address = 0x0A) [reset = 0x00]
      12. 8.6.12 9.Register START_CONFIG (address = 0x0B) [reset = 0x01]
      13. 8.6.13 Register D_CONFIG (address = 0x0C) [reset = 0x00]
      14. 8.6.14 Register L_THRESH_HI_LSB (address = 0x16) [reset = 0x00]
      15. 8.6.15 Register L_THRESH_HI_MSB (address = 0x17) [reset = 0x00]
      16. 8.6.16 Register L_THRESH_LO_LSB (address = 0x18) [reset = 0x00]
      17. 8.6.17 Register L_THRESH_LO_MSB (address = 0x19) [reset = 0x00]
      18. 8.6.18 Register STATUS (address = 0x020 [reset = 0x00]
      19. 8.6.19 Register RP_DATA_LSB (address = 0x21) [reset = 0x00]
      20. 8.6.20 Register RP_DATA_MSB (address = 0x22) [reset = 0x00]
      21. 8.6.21 Register L_DATA_LSB (address = 0x23) [reset = 0x00]
      22. 8.6.22 Register L_DATA_MSB (address = 0x24) [reset = 0x00]
      23. 8.6.23 Register LHR_RCOUNT_LSB (address = 0x30) [reset = 0x00]
      24. 8.6.24 Register LHR_RCOUNT_MSB (address = 0x31) [reset = 0x00]
      25. 8.6.25 Register LHR_OFFSET_LSB (address = 0x32) [reset = 0x00]
      26. 8.6.26 Register LHR_OFFSET_MSB (address = 0x33) [reset = 0x00]
      27. 8.6.27 Register LHR_CONFIG (address = 0x34) [reset = 0x00]
      28. 8.6.28 Register LHR_DATA_LSB (address = 0x38) [reset = 0x00]
      29. 8.6.29 Register LHR_DATA_MID (address = 0x39) [reset = 0x00]
      30. 8.6.30 Register LHR_DATA_MSB (address = 0x3A) [reset = 0x00]
      31. 8.6.31 Register LHR_STATUS (address = 0x3B) [reset = 0x00]
      32. 8.6.32 Register RID (address = 0x3E) [reset = 0x02]
      33. 8.6.33 Register DEVICE_ID (address = 0x3F) [reset = 0xD4]
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1  Theory of Operation
      2. 9.1.2  RP+L Mode Calculations
      3. 9.1.3  LDC1101 RP Configuration
      4. 9.1.4  Setting Internal Time Constant 1
      5. 9.1.5  Setting Internal Time Constant 2
      6. 9.1.6  MIN_FREQ and Watchdog Configuration
      7. 9.1.7  RP+L Sample Rate Configuration with RESP_TIME
      8. 9.1.8  High Resolution Inductance Calculation (LHR mode)
      9. 9.1.9  LHR Sample Rate Configuration with RCOUNT
      10. 9.1.10 Setting RPMIN for LHR Measurements
      11. 9.1.11 Sensor Input Divider
      12. 9.1.12 Reference Clock Input
      13. 9.1.13 INTB Reporting on SDO
      14. 9.1.14 DRDY (Data Ready) Reporting on SDO
      15. 9.1.15 Comparator Functionality
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Device Configuration for RP+L Measurement with an Example Sensor
        2. 9.2.2.2 Device Configuration for LHR Measurement with an Example Sensor
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Ground and Power Planes
      2. 11.1.2 CLKIN Routing
      3. 11.1.3 Capacitor Placement
      4. 11.1.4 Sensor Connections
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 器件支持
      1. 12.1.1 开发支持
    2. 12.2 文档支持
      1. 12.2.1 相关文档
    3. 12.3 社区资源
    4. 12.4 商标
    5. 12.5 静电放电警告
    6. 12.6 术语表
  13. 13机械、封装和可订购信息

6 Pin Configuration and Functions

DRC Package
10-Pin VSON
Top View
LDC1101 pin_configuration_snosd01.gif

Pin Functions

PIN TYPE(1) DESCRIPTION
NAME NO.
CLDO 10 P Internal LDO bypassing pin. A 15 nF capacitor must be connected from this pin to GND.
CLKIN 2 I External time-base Clock Input
CSB 5 I SPI CSB. Multiple devices can be connected on the same SPI bus and CSB can be used to uniquely select desired device
DAP Connect to Ground for improved thermal performance(2)
GND 8 G Ground
INA 7 A External LC tank – connected to external LC tank
INB 6 A External LC tank – connected to external LC tank
SCLK 3 I SPI Clock Input
SDI 4 I SPI Data Input – connect to MOSI of SPI master
SDO/INTB 1 O SPI Data Output/INTB – Connect to MISO of SPI Master. When CSB is high, this pin is High-Z. Alternatively, this pin can be configured to function as INTB
VDD 9 P Power Supply
(1) P= Power, G=Ground, I=Input, O=Output, A=Analog
(2) There is an internal electrical connection between the exposed Die Attach Pad (DAP) and the GND pin of the device. Although the DAP can be left floating, for best performance the DAP should be connected to the same potential as the device's GND pin. Do not use the DAP as the primary ground for the device. The device GND pin must always be connected to ground.