ZHCSEP4A January   2016  – February 2016 TPS7A85

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configurations and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Low-Noise, High-PSRR Output
      2. 7.3.2  Integrated Resistance Network (ANY-OUT)
      3. 7.3.3  Bias Rail
      4. 7.3.4  Power-Good (PG) Function
      5. 7.3.5  Programmable Soft-Start
      6. 7.3.6  Internal Current Limit (ILIM)
      7. 7.3.7  Enable
      8. 7.3.8  Active Discharge Circuit
      9. 7.3.9  Undervoltage Lockout (UVLO)
      10. 7.3.10 Thermal Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operation with 1.1 V ≤ VIN < 1.4 V
      2. 7.4.2 Operation with 1.4 V ≤ VIN ≤ 6.5 V
      3. 7.4.3 Shutdown
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1  Recommended Capacitor Types
      2. 8.1.2  Input and Output Capacitor Requirements (CIN and COUT)
      3. 8.1.3  Noise-Reduction and Soft-Start Capacitor (CNR/SS)
      4. 8.1.4  Feed-Forward Capacitor (CFF)
      5. 8.1.5  Soft-Start and In-Rush Current
      6. 8.1.6  Optimizing Noise and PSRR
        1. 8.1.6.1 Charge Pump Noise
      7. 8.1.7  ANY-OUT Programmable Output Voltage
      8. 8.1.8  ANY-OUT Operation
      9. 8.1.9  Increasing ANY-OUT Resolution for LILO Conditions
      10. 8.1.10 Current Sharing
      11. 8.1.11 Adjustable Operation
      12. 8.1.12 Sequencing Requirements
        1. 8.1.12.1 Sequencing with a Power-Good DC-DC Converter Pin
        2. 8.1.12.2 Sequencing with a Microcontroller (MCU)
      13. 8.1.13 Power-Good (PG) Operation
      14. 8.1.14 Undervoltage Lockout (UVLO) Operation
      15. 8.1.15 Dropout Voltage (VDO)
      16. 8.1.16 Behavior when Transitioning from Dropout into Regulation
      17. 8.1.17 Load Transient Response
      18. 8.1.18 Negatively-Biased Output
      19. 8.1.19 Reverse Current Protection
      20. 8.1.20 Power Dissipation (PD)
        1. 8.1.20.1 Estimating Junction Temperature
        2. 8.1.20.2 Recommended Area for Continuous Operation (RACO)
    2. 8.2 Typical Applications
      1. 8.2.1 Low-Input, Low-Output (LILO) Voltage Conditions
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Typical Application for a 5.0-V Rail
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
  9. Power-Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Board Layout
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 开发支持
        1. 11.1.1.1 评估模块
        2. 11.1.1.2 Spice 模型
      2. 11.1.2 器件命名规则
    2. 11.2 文档支持
      1. 11.2.1 相关文档 
    3. 11.3 社区资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 Glossary
  12. 12机械、封装和可订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over junction temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage IN, BIAS, PG, EN –0.3 7.0 V
IN, BIAS, PG, EN (5% duty cycle, pulse duration = 200 µs) –0.3 7.5
SNS, OUT –0.3 VIN + 0.3(2)
NR/SS, FB –0.3 3.6
50mV, 100mV, 200mV, 400mV, 800mV, 1.6V –0.3 VOUT + 0.3
Current OUT Internally limited A
PG (sink current into device) 5 mA
Operating junction temperature, TJ –55 150 °C
Storage temperature, Tstg –55 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The absolute maximum rating is VIN + 0.3 V or 7.0 V, whichever is smaller.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over junction temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VIN Input supply voltage range 1.1 6.5 V
VBIAS Bias supply voltage range(1) 3.0 6.5 V
VOUT Output voltage range(2) 0.8 5 V
VEN Enable voltage range 0 VIN V
IOUT Output current 0 4 A
CIN Input capacitor 10 47 µF
COUT Output capacitor 47 47 || 10 || 10(3) µF
RPG Power-good pullup resistance 10 100
CNR/SS NR/SS capacitor 10 nF
CFF Feed-forward capacitor 10 nF
R1 Top resistor value in feedback network for adjustable operation 12.1(4)
R2 Bottom resistor value in feedback network for adjustable operation 160(5)
TJ Operating junction temperature –40 125 °C
(1) BIAS supply is required when the VIN supply is below 1.4 V. Conversely, no BIAS supply is required when the VIN supply is higher than or equal to 1.4 V. A BIAS supply helps improve dc and ac performance for VIN ≤ 2.2 V.
(2) This output voltage range does not include device accuracy or accuracy of the feedback resistors.
(3) The recommended output capacitors are selected to optimize PSRR for the frequency range of 400 kHz to 700 kHz. This frequency range is a typical value for dc-dc supplies.
(4) The 12.1-kΩ resistor is selected to optimize PSRR and noise by matching the internal R1 value.
(5) The upper limit for the R2 resistor is to ensure accuracy by making the current through the feedback network much larger than the leakage current into the feedback node.

6.4 Thermal Information

THERMAL METRIC(1) TPS7A85 UNIT
RGR (VQFN)
20 PINS
RθJA Junction-to-ambient thermal resistance 35.4 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 47.6 °C/W
RθJB Junction-to-board thermal resistance 12.3 °C/W
ψJT Junction-to-top characterization parameter 0.5 °C/W
ψJB Junction-to-board characterization parameter 12.4 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 1.0 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Over operating junction temperature range (TJ = –40°C to +125°C), VIN = 1.4 V or VIN = VOUT(nom) + 0.5 V (whichever is greater), VBIAS = open, VOUT(nom) = 0.8 V(2), OUT connected to 50 Ω to GND(3), VEN = 1.1 V, CIN = 10 μF, COUT = 47 μF, CNR/SS without CFF, and PG pin pulled up to VIN with 100 kΩ, unless otherwise noted. Typical values are at TJ = 25°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN Input supply voltage range(1) 1.1 6.5 V
VBIAS Bias supply voltage range(1) VIN = 1.1 V 3.0 6.5 V
VFB Feedback voltage 0.8 V
VNR/SS NR/SS pin voltage 0.8 V
VUVLO1(IN) Input supply UVLO with BIAS VIN rising with VBIAS = 3.0 V 1.02 1.085 V
VHYS1(IN) VUVLO1(IN) hysteresis VBIAS = 3.0 V 320 mV
VUVLO2(IN) Input supply UVLO without BIAS VIN rising 1.31 1.39 V
VHYS2(IN) VUVLO2(IN) hysteresis 253 mV
VUVLO(BIAS) Bias supply UVLO VBIAS rising, VIN = 1.1 V 2.83 2.9 V
VHYS(BIAS) VUVLO(BIAS) hysteresis VIN = 1.1 V 290 mV
VOUT Output voltage Range Using the ANY-OUT pins 0.8 – 1.0% 3.95 + 1.0% V
Using external resistors(4) 0.8 – 1.0% 5.0 + 1.0%
Accuracy(4)(5) 0.8 V ≤ VOUT ≤ 5 V, 5 mA ≤ IOUT ≤ 4 A, over VIN –1.0% 1.0%
Accuracy with BIAS VIN = 1.1 V, 5 mA ≤ IOUT ≤ 4 A,
3.0 V ≤ VBIAS ≤ 6.5 V
–0.75% 0.75%
ΔVOUT/
ΔVIN
Line regulation IOUT = 5 mA, 1.4 V ≤ VIN ≤ 6.5 V 0.0035 mV/V
ΔVOUT/
ΔIOUT
Load regulation 5 mA ≤ IOUT ≤ 4 A, 3.0 V ≤ VBIAS ≤ 6.5 V,
VIN = 1.1 V
0.07 mV/A
5 mA ≤ IOUT ≤ 4 A 0.08
5 mA ≤ IOUT ≤ 4 A, VOUT = 5.0 V 0.4
VDO Dropout voltage VIN = 1.4 V, IOUT = 4 A, VFB = 0.8 V – 3% 215 320 mV
VIN = 5.5 V, IOUT = 4 A, VFB = 0.8 V – 3% 325 500
VIN = 1.1 V, VBIAS = 5.0 V,
IOUT = 4 A, VFB = 0.8 V – 3%
150 240
ILIM Output current limit VOUT forced at 0.9 × VOUT(nom),
VIN = VOUT(nom) + 0.4 V
4.7 5.2 5.7 A
ISC Short-circuit current limit RLOAD = 20 mΩ 1.0 A
IGND GND pin current VIN = 6.5 V, IOUT = 5 mA 2.8 4.0 mA
VIN = 1.4 V, IOUT = 4 A 4.8 6.0
Shutdown, PG = open, VIN = 6.5 V, VEN = 0.5 V 25 µA
IEN EN pin current VIN = 6.5 V, VEN = 0 V and 6.5 V –0.1 0.1 µA
IBIAS BIAS pin current VIN = 1.1 V, VBIAS = 6.5 V,
VOUT(nom) = 0.8 V, IOUT = 4 A
2.3 3.5 mA
VIL(EN) EN pin high-level input voltage
(enable device)
0 0.5 V
VIH(EN) EN pin low-level input voltage
(disable device)
1.1 6.5 V
VIT(PG) PG pin threshold For falling VOUT 82% × VOUT 88.3% × VOUT 93% × VOUT V
VHYS(PG) PG pin hysteresis For rising VOUT 1% × VOUT V
VOL(PG) PG pin low-level output voltage VOUT < VIT(PG), IPG = –1 mA
(current sunk into pin)
0.4 V
Ilkg(PG) PG pin leakage current VOUT > VIT(PG), VPG = 6.5 V 1 µA
INR/SS NR/SS pin charging current VNR/SS = GND, VIN = 6.5 V 4.0 6.2 9.0 µA
IFB FB pin leakage current VIN = 6.5 V –100 100 nA
PSRR Power-supply ripple rejection VIN – VOUT = 0.5 V,
IOUT = 4 A, CNR/SS = 100 nF, CFF = 10 nF, COUT =
47 μF || 10 μF || 10 μF
f = 10 kHz,
VOUT = 0.8 V,
VBIAS = 5.0 V
42 dB
f = 500 kHz, VOUT = 0.8 V, VBIAS = 5.0 V 39
f = 10 kHz,
VOUT = 3.3 V
40
f = 500 kHz, VOUT = 3.3 V 25
Vn Output noise voltage BW = 10 Hz to 100 kHz, VIN = 1.2 V,
VOUT = 0.8 V, VBIAS = 5.0 V, IOUT = 4 A,
CNR/SS = 100 nF, CFF = 10 nF,
COUT = 47 μF || 10 μF || 10 μF
4.4 μVRMS
BW = 10 Hz to 100 kHz,
VOUT = 5.0 V, IOUT = 4 A, CNR/SS = 100 nF,
CFF = 10 nF, COUT = 47 μF || 10 μF || 10 μF
8.4
Tsd Thermal shutdown temperature Shutdown, temperature increasing 160 °C
Reset, temperature decreasing 140
TJ Operating junction temperature –40 125 °C
(1) BIAS supply is required when the VIN supply is below 1.4 V. Conversely, no BIAS supply is required when the VIN supply is higher than or equal to 1.4 V. A BIAS supply helps improve dc and ac performance for VIN ≤ 2.2 V.
(2) VOUT(nom) is the calculated VOUT target value from the ANY-OUT in a fixed configuration. In an adjustable configuration, VOUT(nom) is the expected VOUT value set by the external feedback resistors.
(3) This 50-Ω load is disconnected when the test conditions specify an IOUT value.
(4) When the device is connected to external feedback resistors at the FB pin, external resistor tolerances are not included.
(5) The device is not tested under conditions where VIN > VOUT + 1.25 V and IOUT = 4 A, because the power dissipation is higher than the maximum rating of the package.

6.6 Typical Characteristics

at TA = 25°C, VIN = 1.4 V or VIN = VOUT(NOM) + 0.5 V (whichever is greater), VBIAS = open, VOUT(NOM) = 0.8 V, VEN = 1.1 V, COUT = 47 μF, CNR/SS = 0 nF, CFF = 0 nF, and PG pin pulled up to VIN with 100 kΩ (unless otherwise noted)
TPS7A85 PSRR_vs_Iout.gif
VIN = 1.2 V, VBIAS = 5 V,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF, CFF = 10 nF
Figure 1. PSRR vs Frequency and IOUT
TPS7A85 PSRR_vs_Vbias.gif
VIN = 1.4 V, IOUT = 1 A,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF, CFF = 10 nF
Figure 3. PSRR vs Frequency and VBIAS
TPS7A85 PSRR_vs_Vout_with_Bias.gif
VIN = VOUT + 0.4 V, VBIAS = 5.0 V, IOUT = 4 A,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF, CFF = 10 nF
Figure 5. PSRR vs Frequency and VOUT with Bias
TPS7A85 PSRR_vs_Cout.gif
VIN = 5.6 V, COUT = 47 μF || 10 μF || 10 μF,
CNR/SS = 10 nF, CFF = 10 nF
Figure 7. PSRR vs Frequency and COUT
TPS7A85 PSRR_vs_Vin_5Vout.gif
IOUT = 4 A, COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF,
CFF = 10 nF
Figure 9. PSRR vs Frequency and VIN for VOUT = 5.0 V
TPS7A85 Noise_vs_Vout_Iout.gif
VIN = VOUT + 0.4 V and VBIAS = 5 V for VOUT ≤ 2.2 V,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF, CFF = 10 nF
Figure 11. Output Voltage Noise vs Output Voltage
TPS7A85 Noise_vs_Vin.gif
IOUT = 1 A, COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF,
CFF = 10 nF
Figure 13. Output Noise vs Frequency and VIN
TPS7A85 Noise_vs_Cff.gif
VIN = VOUT + 0.4 V, VBIAS = 5 V, IOUT = 4 A,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF
Figure 15. Output Noise vs Frequency and CFF
TPS7A85 Startup_Vs_Cnr.gif
VIN = 1.2 V, VOUT = 0.9 V, VBIAS = 5.0 V, IOUT = 4 A,
COUT = 47 μF || 10 μF || 10 μF, CFF = 10 nF
Figure 17. Start-Up Waveform vs Time and CNR/SS
TPS7A85 Load_trans_vs_Vout_no_Bias.gif
IOUT, DC = 100 mA, COUT = 47 μF || 10 μF || 10 μF,
CNR/SS = CFF = 10 nF, slew rate = 1 A/μs
Figure 19. Load Transient Waveform vs Time and
VOUT without Bias
TPS7A85 Load_Trans_vs_Cout.gif
VIN = 1.2 V, VBIAS = 5.0 V, IOUT = 100 mA to 4 A,
CNR/SS = CFF = 10 nF, slew rate = 1 A/μs
Figure 21. Load Transient Waveform vs Time and COUT
(VOUT = 0.9 V)
TPS7A85 D001_SBVS267.gif
IOUT = 4 A, VBIAS = 0 V
Figure 23. Dropout Voltage vs Input Voltage without Bias
TPS7A85 D003_SBVS267.gif
VIN = 1.4 V, VBIAS = 0 V
Figure 25. Dropout Voltage vs Output Current without Bias
TPS7A85 D005_SBVS267.gif
VIN = 5.5 V
Figure 27. Dropout Voltage vs Output Current (High VIN)
TPS7A85 D006_SBVS267.gif
Figure 29. Load Regulation (0.8-V Output)
TPS7A85 D010_SBVS267.gif
Figure 31. Load Regulation (5-V Output)
TPS7A85 D012_SBVS267.gif
VIN = 1.1 V, IOUT = 5 mA
Figure 33. Line Regulation vs Bias Voltage
TPS7A85 D015_SBVS267.gif
IOUT = 5 mA
Figure 35. Ground Pin Current vs Input Voltage
TPS7A85 D017_SBVS267.gif
Figure 37. Shutdown Current vs Input Voltage
TPS7A85 D019_SBVS267.gif
Figure 39. NR/SS Charging Current vs Input Voltage
TPS7A85 D022_SBVS267.gif
VIN = 1.1 V
Figure 41. VBIAS UVLO vs Temperature
TPS7A85 D024_SBVS267.gif
Figure 43. PG Voltage vs PG Current Sink
TPS7A85 D026_SBVS267.gif
Figure 45. PG Threshold vs Temperature
TPS7A85 PSRR_vs_Vin_with_Bias.gif
IOUT = 4 A, VBIAS = 5 V,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF, CFF = 10 nF
Figure 2. PSRR vs Frequency and VIN with Bias
TPS7A85 PSRR_vs_VIN.gif
IOUT = 1 A,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF, CFF = 10 nF
Figure 4. PSRR vs Frequency and VIN
TPS7A85 PSRR_vs_Vin_3p3Vout.gif
IOUT = 4 A, COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF,
CFF = 10 nF
Figure 6. PSRR vs Frequency and VIN for VOUT = 3.3 V
TPS7A85 PSRR_vs_Iout_5Vout.gif
VIN = VOUT + 0.4 V, VOUT = 1 V, IOUT = 4 A,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF, CFF = 10 nF
Figure 8. PSRR vs Frequency and IOUT for VOUT = 5.0 V
TPS7A85 7a85_Bias_PSRR.gif
VIN = VOUT + 0.4 V, VOUT = 1 V, IOUT = 4 A,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF, CFF = 10 nF
Figure 10. VBIAS PSRR vs Frequency
TPS7A85 Noise_vs_Vout.gif
VIN = VOUT + 0.4 V and VBIAS = 5 V for VOUT ≤ 2.2 V, IOUT = 4 A, COUT = 47 μF || 10 μF || 10 μF, CNR/SS = 10 nF, CFF = 10 nF
Figure 12. Output Noise vs Frequency and VOUT
TPS7A85 Noise_vs_Cnr.gif
VIN = VOUT + 0.4 V, VBIAS = 5 V, IOUT = 4 A,
COUT = 47 μF || 10 μF || 10 μF, CFF = 10 nF
Figure 14. Output Noise vs Frequency and CNR/SS
TPS7A85 Noise_vs_Cnr_Cff_5Vout.gif
VIN = 5.6 V, IOUT = 4 A, COUT = 47 μF || 10 μF || 10 μF,
CFF = 10 nF
Figure 16. Output Noise at 5.0-V Output vs CNR/SS and CFF
TPS7A85 Load_trans_vs_Vout_with_Bias.gif
VIN = VOUT + 0.3 V, VBIAS = 5 V, IOUT, DC = 100 mA, slew rate = 1 A/μs, CNR/SS = CFF = 10 nF, COUT = 47 μF || 10 μF || 10 μF
Figure 18. Load Transient Waveform vs Time and
VOUT with Bias
TPS7A85 load_trans_vs_SR_5Vout.gif
VOUT = 5 V, IOUT, DC = 100 mA, IOUT = 100 mA to 4 A,
COUT = 47 μF || 10 μF || 10 μF, CNR/SS = CFF = 10 nF
Figure 20. Load Transient Waveform vs Time and
Slew Rate
TPS7A85 Load_trans_vs_preload.gif
VIN = 1.2 V, VBIAS = 5.0 V, COUT = 47 μF || 10 μF || 10 μF,
CNR/SS = CFF = 10 nF, slew rate = 1 A/μs
Figure 22. Load Transient Waveform vs Time and DC Load
(VOUT = 0.9 V)
TPS7A85 D002_SBVS267.gif
IOUT = 4 A, VBIAS = 6.5 V
Figure 24. Dropout Voltage vs Input Voltage with Bias
TPS7A85 D004_SBVS267.gif
VIN = 1.1 V, VBIAS = 3 V
Figure 26. Dropout Voltage vs Output Current with Bias
TPS7A85 Load_reg_vs_Vout.gif
IOUT = 100 mA to 4 A
Figure 28. Load Regulation vs Output Voltage
TPS7A85 D008_SBVS267.gif
Figure 30. Load Regulation (3.3-V Output)
TPS7A85 D011_SBVS267.gif
IOUT = 5 mA
Figure 32. Line Regulation without Bias
TPS7A85 D014_SBVS267.gif
IOUT = 5 mA
Figure 34. Line Regulation (5-V Output)
TPS7A85 D016_SBVS267.gif
VIN = 1.1 V, IOUT = 5 mA
Figure 36. Bias Pin Current vs Bias Voltage
TPS7A85 D018_SBVS267.gif
VIN = 1.1 V
Figure 38. Shutdown Current vs Bias Voltage
TPS7A85 UVLO_Vin.gif
Figure 40. VIN UVLO vs Temperature
TPS7A85 D023_SBVS267.gif
Figure 42. Enable Threshold vs Temperature
TPS7A85 D025_SBVS267.gif
VIN = 6.5 V
Figure 44. PG Voltage vs PG Current Sink