ZHCSFO3D November 2016 – August 2021 LM5170-Q1
PRODUCTION DATA
PARAMETER | TEST CONDITIONS | MIN(3) | TYP(2) | MAX(3) | UNIT | |
---|---|---|---|---|---|---|
VIN SUPPLY (VIN, VINX) | ||||||
ISHUTDOWN | VIN pin current in shutdown mode | VUVLO = 0 V | 10 | µA | ||
ISTANDBY | VIN pin current, no switching | VVCC > 9 V, VUVLO > 2.5 V, VEN1 = VEN2 = 0 V | 1 | mA | ||
VIN to VINX disconnect switch | VUVLO < 1 V or VVCC < 7.5 V | 5 | MΩ | |||
VIN to VINX disconnect switch | VUVLO > 2.6 V, VVCC > 9 V | 100 | Ω | |||
VCC AND VCCA BIAS SUPPLIES | ||||||
VCCUVLO | VCC undervoltage detection | VVCC falling | 7.6 | 8 | 8.3 | V |
VCCHYS | VCC UVLO hysteresis | VVCC rising | 8.1 | 8.5 | 8.9 | V |
IVCC_SD | VCC sink current in shutdown mode | VUVLO = 0 V | 20 | µA | ||
IVCC_SB | VCC sink current in standby: no switching | VUVLO > 2.6 V, VEN1 = VEN2 = 0 V | 10 | mA | ||
MASTER ON/OFF CONTROL (UVLO) | ||||||
VUVLO_TH | UVLO release threshold | UVLO voltage rising | 2.4 | 2.5 | 2.6 | V |
IHYS | UVLO hysteresis current | UVLO source current when VUVLO > 2.6 V | 21 | 25 | 29 | µA |
VSD | UVLO shutdown threshold (IC shutdown) | UVLO voltage falling | 1 | 1.25 | 1.5 | V |
UVLO shutdown release | UVLO voltage rising above VSD | 0.15 | 0.25 | 0.35 | V | |
tUVLO | UVLO glitch filter time | UVLO voltage falling | 2.5 | µs | ||
UVLO internal pulldown current | 1 | µA | ||||
CHANNEL ENABLE INPUTS EN1 AND EN2 | ||||||
VIL | Enable input low state | Disabled the driver outputs | 1 | V | ||
VIH | Enable input high state | Enable the driver outputs | 2 | V | ||
Internal pulldown impedance | EN1, EN2 internal pulldown resistor | 100 | kΩ | |||
EN glitch filter time (the rising and falling edges) | 2 | µs | ||||
DIRECTION COMMAND (DIR) | ||||||
VDIR | Command for current flowing from LV-Port to HV-Port (boost mode 12 V to 48 V) | Actively pulled low by external circuit | 1 | V | ||
Command for current flowing from HV-Port to LV-Port (buck mode 48 V to 12 V) | Actively pulled high by external circuit | 2 | V | |||
Standby (invalid DIR command) | DIR neither active high nor active low | 1.5 | V | |||
DIR glitch filter | Both rising and falling edges | 10 | µs | |||
ISET INPUT (ISETA, ISETD) | ||||||
GISETA | Regulated DC current sense voltage to ISETA voltage | |VCSA – VCSB| = 50 mV | 19.7 | 20 | 20.3 | mV/V |
ISETA internal pulldown resistor | 170 | kΩ | ||||
GISETD | Conversion ratio of ISETA voltage to ISETD duty cycle | ISETD frequency = 10 kHz, Duty = 100% | 30.63 | 31.25 | 31.88 | mV / % |
VISETD _LO | ISETD PWM signal low-state voltage | 1 | V | |||
VISETD _HI | ISETD PWM signal high-state voltage | 2 | V | |||
ISETD internal pulldown resistor | 100 | kΩ | ||||
ISETD internal decoder filter resistor (tied to ISETA pin) | 100 | kΩ | ||||
OUTPUT CURRENT MONITOR (IOUT1, IOUT2) | ||||||
GIOUT_BK1 | IOUT1 and IOUT2 versus channel current sense voltage, in buck mode | |VCSA – VCSB| = 50 mV, VDIR > 2 V | 4.9 | 5 | 5.1 | μA/mV |
GIOUT_BST1 | IOUT1 and IOUT2 versus channel current sense voltage, in boost mode | |VCSA – VCSB| = 50 mV, VDIR < 1 V | 4.9 | 5 | 5.1 | μA/mV |
GIOUT_BK2 | IOUT1 and IOUT2 versus channel current sense voltage, in buck mode | |VCSA – VCSB| = 10 mV, VDIR > 2 V, TJ = 25°C | 4.91 | 5.18 | 5.43 | μA/mV |
GIOUT_BST2 | IOUT1 and IOUT2 versus channel current sense voltage, in boost mode | |VCSA – VCSB| = 10 mV, VDIR < 1 V, TJ = 25°C | 4.47 | 4.77 | 5.1 | μA/mV |
IOUT1 and IOUT2 DC offset currents | |VCSA – VCSB| = 0 mV | 22 | 25 | 28 | µA | |
CURRENT SENSE AMPLIFIER (BOTH CHANNELS) | ||||||
GCS_BK1 | Amplifier output to current sense voltage in buck mode | |VCSA – VCSB| = 50 mV, VDIR > 2 V | 49.25 | 50 | 50.75 | V/V |
GCS_BST1 | Amplifier output to current sense voltage in boost mode | |VCSA – VCSB| = 50 mV, VDIR < 1 V | 49.25 | 50 | 50.75 | V/V |
GCS_BK2 | Amplifier output to current sense voltage in buck mode | |VCSA – VCSB| = 10 mV, VDIR > 2 V, TJ = 25°C | 49 | 52 | 55 | V/V |
GCS_BST2 | Amplifier output to current sense voltage in boost mode | |VCSA – VCSB| = 10 mV, VDIR < 1 V, TJ = 25°C | 45 | 48 | 51 | V/V |
BWCS | Amplifier bandwidth | 10 | MHz | |||
TRANSCONDUCTION AMPLIFIER (COMP1, COMP2) | ||||||
Gm | Transconductance | 1 | mA/V | |||
ICOMP | Output source current limit | VISETA = 2.5 V, |VCSA – VCSB| = 10 mV | 2 | mA | ||
Output sink current limit | VISETA = 0 V, |VCSA – VCSB| = 50 mV | –2 | mA | |||
BWgm | Amplifier bandwidth | 4 | MHz | |||
PWM COMPARATOR | ||||||
COMP to output delay | 50 | ns | ||||
COMP to PWM offset | 1 | V | ||||
TOFF(min) | Minimum OFF time | 150 | 200 | 250 | ns | |
RAMP GENERATOR (RAMP1 AND RAMP2) | ||||||
RAMP discharge device RDS(on) | 15 | Ω | ||||
Threshold voltage for valid ramp signal | 0.6 | V | ||||
PEAK CURRENT LIMIT (IPK) | ||||||
IPK internal current source | 24.375 | 25 | 25.625 | µA | ||
IPKBuck | Current sense voltage versus cycle-by-cycle limit threshold voltage given at IPK pin, in buck mode | RIPK = 40 kΩ, VDIR > 2 V | 35.8 | 46 | 58.9 | mV/V |
IPKBoost | Current sense voltage versus cycle-by-cycle limit threshold voltage given at IPK pin, in boost mode | RIPK = 40 kΩ, VDIR < 1 V | 38.5 | 48 | 62.25 | mV/V |
OVERVOLTAGE PROTECTION (OVPA, OVPB) | ||||||
OVP threshold | OVP voltage rising | 1.15 | 1.185 | 1.22 | V | |
OVPHYS | OVP hysteresis (falling edge) | 100 | mV | |||
OVPA and OVPB glitch filter | 5 | µs | ||||
ROVPA | Internal OVPA pullup resistor | VINX to OVPA impedance | 3 | MΩ | ||
ROVPB | Internal OVPB pullup resistor | CSB1 to OVPB impedance, VUVLO > 2.6 V | 1 | MΩ | ||
OSCILLATOR (OSC) | ||||||
Oscillator frequency 1 | ROSC = 40 kΩ, SYNCIN open | 90 | 100 | 110 | kHz | |
Oscillator frequency 2 | ROSC = 10 kΩ, SYNCIN open | 335 | 375 | 410 | kHz | |
VOSC | OSC pin DC voltage | 1.25 | V | |||
SYNCIN | ||||||
VSYNIH | SYNCIN input threshold for high state | 2 | V | |||
VSYNIL SYNC | SYNCIN input threshold for low state | 1 | V | |||
Internal pulldown impedance | VSYNCIN = 2.5 V | 100 | kΩ | |||
Delay to establish synchronization | 0.8 × FOSC < FSYNCIN < 1.2 × FOSC | 200 | µs | |||
SYNCOUT | ||||||
VSYNOH | SYNCOUT high state | 2.5 | V | |||
VSYNOL | SYNCOUT low state | 0.4 | V | |||
Sourcing current when SYNCOUT in high state | VSYNCOUT = 2.5 V | 1 | mA | |||
SYNCOUT pulse width | 240 | 300 | 370 | ns | ||
SYNCOUT phase delay configurations | VOPT > 2 V | 90 | Degree | |||
VOPT < 1 V | 120 | |||||
RSYNCOUT | Circuit breaker signature | Use circuit breaker function and fault detection at start-up | OPEN | kΩ | ||
Do not use circuit breaker function or disable fault detection at start-up | 10 | |||||
BOOTSTRAP (HB1, HB2) | ||||||
VHB-UV | Bootstrap undervoltage threshold | (VHB – VSW) voltage rising | 5.7 | 6.5 | 7.3 | V |
VHB-UV-HYS | Hysteresis | 0.5 | V | |||
IHB-LK | Bootstrap quiescent current | VHB – VSW = 10 V, VHO – VSW = 0 V | 50 | µA | ||
HIGH-SIDE GATE DRIVERS (HO1, HO2) | ||||||
VOLH | HO low-state output voltage | IHO = 100 mA | 0.1 | V | ||
VOHH | HO high-state output voltage | IHO = –100 mA, VOHH = VHB – VHO | 0.15 | V | ||
HO rise time (10% to 90% pulse magnitude) | CLD = 1000 pF | 5 | ns | |||
HO fall time (90% to 10% pulse magnitude) | CLD = 1000 pF | 4 | ns | |||
IOHH | HO peak source current | VHB – VSW = 10 V | 4 | A | ||
IOLH | HO peak sink current | VHB – VSW = 10 V | 5 | A | ||
LOW-SIDE GATE DRIVERS (LO1, LO2) | ||||||
VOLL | LO low-state output voltage | ILO = 100 mA | 0.1 | V | ||
VOHL | LO high-state output voltage | ILO = –100 mA, VOHL = VVCC – VLO | 0.15 | V | ||
LO rise time (10% to 90% pulse magnitude) | CLD = 1000 pF | 5 | ns | |||
LO fall time (90% to 10% pulse magnitude) | CLD = 1000 pF | 4 | ns | |||
IOHL | LO peak source current | 4 | A | |||
IOLL | LO peak sink current | 5 | A | |||
INTERLEAVE PHASE DELAY FROM CH-2 To CH-1 (OPT) | ||||||
VOPTL | OPT input low state | 1 | V | |||
VOPTH | OPT input high state | 2 | V | |||
HO2 on-time rising edge versus HO1 on-time rising edge, or LO2 on-time rising edge versus LO1 on-time rising edge | VOPT > 2 V for 2, 4, 6, and 8 phases | 175 | 180 | 185 | Degrees | |
VOPT < 1 V for 3 phases | 235 | 240 | 245 | |||
Internal pulldown impedance | 1 | MΩ | ||||
DEAD TIME (DT) | ||||||
tDT | LO falling edge to HO rising edge delay | RDT = 7.5 kΩ | 40 | ns | ||
tDT | HO falling edge to LO rising edge delay | RDT = 7.5 kΩ | 40 | ns | ||
VDT | DC voltage level for programming | 1.25 | V | |||
VDT | DC voltage for adaptive dead time scheme only (short DT to VCCA) | VCCA | V | |||
VADPT | HO-SW or LO-GND voltage threshold to enable cross output for adaptive dead time scheme | VVCC > 9 V, (VHB – VSW) > 8 V, HO or LO voltage falling | 1.5 | V | ||
tADPT | LO falling edge to HO rising edge delay | VDT = VVCC | 36 | ns | ||
tADPT | HO falling edge to LO rising edge delay | VDT = VVCC | 41 | ns | ||
SOFT START (SS) | ||||||
ISS | SS charging current source | VSS = 0 V | 25 | µA | ||
VSS-OFFS | SS to PWM comparator offset | SS – PWM comparator noninverting input | 1 | V | ||
RSS | SS discharge device RDS(on) | VSS = 2 V | 30 | Ω | ||
VSS_LOW | SS discharge completion threshold | Once it is discharged by internal logic | 0.23 | V | ||
DIODE EMULATION | ||||||
Current zero cross threshold | Current sense voltage | 0 | mV | |||
CKT BREAKER CONTROL (BRKG, BRKS) | ||||||
IBRKG | Sourcing current | nFAULT = 5 V, VVIN = 24 V, VBRKS = 12 V | 275 | 330 | 375 | µA |
VBRK-CLP | Voltage clamp | nFAULT= 5 V, VVIN = 48 V, VBRKS = 12 V | 9 | 14 | V | |
RBRK-SINK | Sinking capability | nFAULT = 0 V | 20 | Ω | ||
VREADY | BRKG to BRKS voltage threshold to indicate readiness for operation | Rising edge | 6.5 | 8.5 | V | |
IBRKG-LEAK | BRKG leakage current | nFAULT= 5 V, VVIN – VBRKS = 0 V, VBRKG – VBRKS = 10 V | 10 | µA | ||
FAULT ALARM (nFAULT) | ||||||
In normal operation, no fault | 4 | 5 | V | |||
Internal pull-up impedance for normal operation | 30 | kΩ | ||||
Internal pull-down FET RDS(on) after fault detected | 125 | Ω | ||||
External pull-down voltage threshold for IC shutdown | 1 | V | ||||
tFAULT | External pul-ldown glitch filter | 2 | µs | |||
td1_FAULT | Delay time of nFAULT pull-down below 1 V to (VBRKG – VBRKS) < 1.5 V | 5 | µs | |||
td2_FAULT | Start-up fault detection duration | VUVLO > 2.6 V, VVCC > 9 V | 3 | ms | ||
THERMAL SHUTDOWN | ||||||
TSD | Thermal shutdown | 175 | °C | |||
TSD-HYS | Thermal shutdown hysteresis | 25 | °C |