ZHCSGX5 October   2017 ADS54J64

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  AC Performance
    7. 6.7  Digital Characteristics
    8. 6.8  Timing Characteristics
    9. 6.9  Typical Characteristics: DDC Bypass Mode
    10. 6.10 Typical Characteristics: Mode 2
    11. 6.11 Typical Characteristics: Mode 0
    12. 6.12 Typical Characteristics: Dual ADC Mode
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Inputs
      2. 7.3.2 Recommended Input Circuit
      3. 7.3.3 Clock Input
    4. 7.4 Device Functional Modes
      1. 7.4.1 Digital Functions
        1. 7.4.1.1  Numerically Controlled Oscillators (NCOs) and Mixers
        2. 7.4.1.2  Decimation Filter
          1. 7.4.1.2.1 Stage-1 Filter
          2. 7.4.1.2.2 Stage-2 Filter
        3. 7.4.1.3  Mode 0: Decimate-by-4 With IQ Outputs and fS / 4 Mixer
        4. 7.4.1.4  Mode 1: Decimate-by-4 With IQ Outputs and 16-Bit NCO
        5. 7.4.1.5  Mode 2: Decimate-by-4 With Real Output
        6. 7.4.1.6  Mode 3: Decimate-by-2 Real Output With Frequency Shift
        7. 7.4.1.7  Mode 4: Decimate-by-4 With Real Output
        8. 7.4.1.8  Mode 6: Decimate-by-4 With IQ Outputs for Up to 110 MHz of IQ Bandwidth
        9. 7.4.1.9  Mode 7: Decimate-by-4 With Real Output and Zero Stuffing
        10. 7.4.1.10 Mode 8: DDC Bypass Mode
        11. 7.4.1.11 Averaging Mode
        12. 7.4.1.12 Overrange Indication
    5. 7.5 Programming
      1. 7.5.1 JESD204B Interface
      2. 7.5.2 JESD204B Initial Lane Alignment (ILA)
      3. 7.5.3 JESD204B Frame Assembly
      4. 7.5.4 JESD Output Switch
        1. 7.5.4.1 SerDes Transmitter Interface
        2. 7.5.4.2 SYNCb Interface
        3. 7.5.4.3 Eye Diagram
      5. 7.5.5 Device Configuration
        1. 7.5.5.1 Details of the Serial Interface
          1. 7.5.5.1.1 Register Initialization
        2. 7.5.5.2 Serial Register Write
        3. 7.5.5.3 Serial Read
    6. 7.6 Register Maps
      1. 7.6.1 Register Map
        1. 7.6.1.1 Register Description
          1. 7.6.1.1.1 GLOBAL Page Register Description
            1. 7.6.1.1.1.1 Register 00h (address = 00h) [reset = 0h], GLOBAL Page
            2. 7.6.1.1.1.2 Register 04h (address = 04h) [reset = 0h], GLOBAL Page
            3. 7.6.1.1.1.3 Register 11h (address = 11h) [reset = 0h], GLOBAL Page
            4. 7.6.1.1.1.4 Register 12h (address = 12h) [reset = 0h], GLOBAL Page
            5. 7.6.1.1.1.5 Register 13h (address = 13h) [reset = 0h], GLOBAL Page
          2. 7.6.1.1.2 DIGTOP Page Register Description
            1. 7.6.1.1.2.1  Register 64h (address = 64h) [reset = 0h], DIGTOP Page
            2. 7.6.1.1.2.2  Register 8Dh (address = 8Dh) [reset = 0h], DIGTOP Page
            3. 7.6.1.1.2.3  Register 8Eh (address = 8Eh) [reset = 0h], DIGTOP Page
            4. 7.6.1.1.2.4  Register 8Fh (address = 8Fh) [reset = 0h], DIGTOP Page
            5. 7.6.1.1.2.5  Register 90h (address = 90h) [reset = 0h], DIGTOP Page
            6. 7.6.1.1.2.6  Register 91h (address = 91h) [reset = 0h], DIGTOP Page
            7. 7.6.1.1.2.7  Register A5h (address = A5h) [reset = 0h], DIGTOP Page
            8. 7.6.1.1.2.8  Register A6h (address = A6h) [reset = 0h], DIGTOP Page
            9. 7.6.1.1.2.9  Register ABh (address = ABh) [reset = 0h], DIGTOP Page
            10. 7.6.1.1.2.10 Register ACh (address = ACh) [reset = 0h], DIGTOP Page
            11. 7.6.1.1.2.11 Register ADh (address = ADh) [reset = 0h], DIGTOP Page
            12. 7.6.1.1.2.12 Register AEh (address = AEh) [reset = 0h], DIGTOP Page
            13. 7.6.1.1.2.13 Register B7h (address = B7h) [reset = 0h], DIGTOP Page
            14. 7.6.1.1.2.14 Register 8Ch (address = 8Ch) [reset = 0h], DIGTOP Page
          3. 7.6.1.1.3 ANALOG Page Register Description
            1. 7.6.1.1.3.1  Register 6Ah (address = 6Ah) [reset = 0h], ANALOG Page
            2. 7.6.1.1.3.2  Register 6Fh (address = 6Fh) [reset = 0h], ANALOG Page
            3. 7.6.1.1.3.3  Register 71h (address = 71h) [reset = 0h], ANALOG Page
            4. 7.6.1.1.3.4  Register 72h (address = 72h) [reset = 0h], ANALOG Page
            5. 7.6.1.1.3.5  Register 93h (address = 93h) [reset = 0h], ANALOG Page
            6. 7.6.1.1.3.6  Register 94h (address = 94h) [reset = 0h], ANALOG Page
            7. 7.6.1.1.3.7  Register 9Bh (address = 9Bh) [reset = 0h], ANALOG Page
            8. 7.6.1.1.3.8  Register 9Dh (address = 9Dh) [reset = 0h], ANALOG Page
            9. 7.6.1.1.3.9  Register 9Eh (address = 9Eh) [reset = 0h], ANALOG Page
            10. 7.6.1.1.3.10 Register 9Fh (address = 9Fh) [reset = 0h], ANALOG Page
            11. 7.6.1.1.3.11 Register AFh (address = AFh) [reset = 0h], ANALOG Page
          4. 7.6.1.1.4 SERDES_XX Page Register Description
            1. 7.6.1.1.4.1  Register 20h (address = 20h) [reset = 0h], SERDES_XX Page
            2. 7.6.1.1.4.2  Register 21h (address = 21h) [reset = 0h], SERDES_XX Page
            3. 7.6.1.1.4.3  Register 22h (address = 22h) [reset = 0h], SERDES_XX Page
            4. 7.6.1.1.4.4  Register 23h (address = 23h) [reset = 0h], SERDES_XX Page
            5. 7.6.1.1.4.5  Register 25h (address = 25h) [reset = 0h], SERDES_XX Page
            6. 7.6.1.1.4.6  Register 26h (address = 26h) [reset = 0h], SERDES_XX Page
            7. 7.6.1.1.4.7  Register 28h (address = 28h) [reset = 0h], SERDES_XX Page
            8. 7.6.1.1.4.8  Register 2Dh (address = 2Dh) [reset = 0h], SERDES_XX Page
            9. 7.6.1.1.4.9  Register 36h (address = 36h) [reset = 0h], SERDES_XX Page
            10. 7.6.1.1.4.10 Register 41h (address = 41h) [reset = 0h], SERDES_XX Page
            11. 7.6.1.1.4.11 Register 42h (address = 42h) [reset = 0h], SERDES_XX Page
          5. 7.6.1.1.5 CHX Page Register Description
            1. 7.6.1.1.5.1 Register 26h (address = 26h) [reset = 0h], CHX Page
            2. 7.6.1.1.5.2 Register 27h (address = 27h) [reset = 0h], CHX Page
            3. 7.6.1.1.5.3 Register 2Dh (address = 2Dh) [reset = 0h], CHX Page
            4. 7.6.1.1.5.4 Register 78h (address = 78h) [reset = 0h], CHX Page
            5. 7.6.1.1.5.5 Register 7Ah (address = 7Ah) [reset = 0h], CHX Page
            6. 7.6.1.1.5.6 Register 7Bh (address = 7Bh) [reset = 0h], CHX Page
            7. 7.6.1.1.5.7 Register 7Eh (address = 7Eh) [reset = 3h], CHX Page
          6. 7.6.1.1.6 ADCXX Page Register Description
            1. 7.6.1.1.6.1 Register 07h (address = 07h) [reset = FFh], ADCXX Page
            2. 7.6.1.1.6.2 Register 08h (address = 08h) [reset = 0h], ADCXX Page
            3. 7.6.1.1.6.3 Register D5h (address = D5h) [reset = 0h], ADCXX Page
            4. 7.6.1.1.6.4 Register 2Ah (address = 2Ah) [reset = 0h], ADCXX Page
            5. 7.6.1.1.6.5 Register CFh (address = CFh) [reset = 0h], ADCXX Page
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Start-Up Sequence
      2. 8.1.2 Hardware Reset
      3. 8.1.3 Frequency Planning
      4. 8.1.4 SNR and Clock Jitter
      5. 8.1.5 ADC Test Pattern
        1. 8.1.5.1 ADC Section
        2. 8.1.5.2 Transport Layer Pattern
        3. 8.1.5.3 Link Layer Pattern
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 接收文档更新通知
    2. 11.2 社区资源
    3. 11.3 商标
    4. 11.4 静电放电警告
    5. 11.5 Glossary
  12. 12机械、封装和可订购信息

Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

Start-Up Sequence

Table 62 lists the recommended start-up sequence for a 500-MSPS, Nyquist 2 operation with DDC mode 8 enabled.

Table 62. Recommended Start-Up Sequence for 500-MSPS, Nyquist 2, DDC Bypass Mode (Mode 8) Operation

STEP DESCRIPTION REGISTER ADDRESS REGISTER DATA COMMENT
1 Provide a 1.15-V power supply (AVDD, DVDD)
2 Provide a 1.9-V power supply (AVDD19) A 1.15-V supply must be supplied first for proper operation.
3 Provide a clock to CLKINM, CLKINP and a SYSREF signal to SYSREFM, SYSREFP SYSREF must be established before SPI programming.
4 Pulse a reset (low to high to low) via a hardware reset (pin 48), wait 100 µs Hardware reset loads all trim register settings.
5 Issue a software reset to initialize the registers 00h 81h
6 Set the high SNR mode for channel pairs AB and CD, select trims for 500-MSPS operation 11h 00h Select the DIGTOP page.
12h 01h
13h 00h
ABh 01h Set the high SNR mode for channels A and B.
ACh 01h Set the high SNR mode for channels C and D.
ADh 08h Select DDC bypass mode (mode 8) for channels A and B.
AEh 08h Select DDC bypass mode (mode 8) for channels C and D.
64h 02h Select trims for 500-MSPS operation.
7 Set up the SerDes configuration 11h 00h Select the SerDes_AB and SerDes_CD pages.
12h 60h
13h 00h
26h 0Fh Set the K value to 16 frames per multi-frame.
20h 80h Enable the K value from register 26h.
8 ADC calibration 11h FFh Select the ADC_A1, ADC_A2, ADC_B1, ADC_B2, ADC_C1, ADC_C2, ADC_D1, and ADC_D2 pages.
12h 00h
13h 00h
D5h 08h Enable ADC calibration.
Wait 2 ms ADC calibration time.
D5h 00h Disable ADC calibration.
2Ah 00h Internal trims.
CFh 50h
9 Select trims for the second Nyquist 11h 00h Select the channel A, channel B, channel C, and channel D pages.
12h 1Eh
13h 00h
2Dh 02h Select trims for the second Nyquist.
10 Load linearity trims 11h 00h Select the DIGTOP page.
12h 01h
13h 00h
8Ch 02h Load linearity trims.
B7h 01h
B7h 00h
11 Disable SYSREF 11h 00h Select the ANALOG page.
12h 00h
13h 01h
6Ah 02h Disable SYSREF.

Table 63 lists the recommended start-up sequence for a 500-MSPS, Nyquist 2, 2x interleaved dual ADC operation.

Table 63. Recommended Start-Up Sequence for 500-MSPS, Nyquist 2, 2x Interleaved Dual ADC Operation

STEP DESCRIPTION REGISTER ADDRESS REGISTER DATA COMMENT
1 Provide a 1.15-V power supply (AVDD, DVDD)
2 Provide a 1.9-V power supply (AVDD19) A 1.15-V supply must be supplied first for proper operation.
3 Provide a clock to CLKINM, CLKINP and a SYSREF signal to SYSREFM, SYSREFP SYSREF must be established before SPI programming.
4 Pulse a reset (low to high to low) via a hardware reset (pin 48), wait 100 µs Hardware reset loads all trim register settings.
5 Issue a software reset to initialize the registers 00h 81h
6 Set the high SNR mode for channel pairs AB and CD, select trims for 500-MSPS operation 11h 00h Select the DIGTOP page.
12h 01h
13h 00h
A5h 03h Enable averaging on the AB and CD channel pair.
A6h 20h Enable the averaging option.
ABh 03h Set the high SNR and interleave mode for channels A and B.
ACh 03h Set the high SNR and interleave mode for channels C and D.
ADh 08h Select DDC bypass mode (mode 8) for channels A and B.
AEh 08h Select DDC bypass mode (mode 8) for channels C and D.
64h 02h Select trims for 500-MSPS operation.
7 Set up the SerDes configuration 11h 00h Select the SERDES_AB and SERDES_CD pages.
12h 60h
13h 00h
26h 0Fh Set the K value to 16 frames per multi-frame.
20h 80h Enable the K value from register 26h.
8 ADC calibration 11h FFh Select the ADC_A1, ADC_A2, ADC_B1, ADC_B2, ADC_C1, ADC_C2, ADC_D1, and ADC_D2 pages.
12h 00h
13h 00h
D5h 08h Enable ADC calibration.
Wait 2 ms ADC calibration time.
D5h 00h Disable ADC calibration.
2Ah 00h Internal trims.
CFh 50h
9 Select trims for the second Nyquist 11h 00h Select the channel A, channel B, channel C, and channel D pages.
12h 1Eh
13h 00h
2Dh 02h Select trims for the second Nyquist.
10 Load linearity trims 11h 00h Select the DIGTOP page.
12h 01h
13h 00h
8Ch 02h Load linearity trims.
B7h 01h
B7h 00h
11 Disable SYSREF 11h 00h Select the ANALOG page.
12h 00h
13h 01h
6Ah 02h Disable SYSREF.

Hardware Reset

Figure 130 shows the timing information for the hardware reset.

ADS54J64 hardware_reset_tmng_dgm_sbas706.gif Figure 130. Hardware Reset Timing Diagram

Table 64. Timing Requirements for Figure 130

MIN TYP MAX UNIT
t1 Power-on delay from power-up to an active high RESET pulse 1 ms
t2 Reset pulse duration: active high RESET pulse duration 10 ns
t3 Register write delay from RESET disable to SEN active 100 µs

Frequency Planning

The ADS54J64 uses an architecture where the ADCs are 2x interleaved followed by a digital decimation by 2. The 2x interleaved and decimation architecture comes with a unique advantage of improved linearity resulting from frequency planning. Frequency planning refers to choosing the clock frequency and signal band appropriately such that the harmonic distortion components, resulting from the analog front-end (LNA, PGA), can be made to fall outside the decimation filter pass band. In absence of the 2x interleave and decimation architecture, these components alias back in band and limit the performance of the signal chain. For example, for fCLK = 983.04 MHz and fIN = 184.32 MHz:

Second-order harmonic distortion (HD2) = 2 × 184.32 = 368.64 MHz

Pass band of the 2x decimation filter = 0 MHz to 245.76 MHz (0 to fCLK / 4)

The second-order harmonic performance improves by the stop-band attenuation of the filter (approximately 40 dBc) because the second-order harmonic frequency is outside the pass band of the decimation filter.

Figure 131 shows the harmonic components (HD2–HD5) that fall in the decimation pass band for the input clock rate (fCLK) of the 983.04-MHz and 100-MHz signal band around the center frequency of 184.32 MHz.

ADS54J64 D046_SBAS807.gif

NOTE:

fCLK = 983.04 MHz, signal band = 134.32 MHz to 234.32 MHz.
Figure 131. In-Band Harmonics for a Frequency Planned System

As shown in Figure 131, both HD2 and HD3 are completely out of band. HD4 and HD5 fall in the decimation pass band for some frequencies of the input signal band.

Through proper frequency planning, the specifications of the ADC antialias filter can be relaxed.

SNR and Clock Jitter

The signal-to-noise ratio of the ADC is limited by three different factors (as shown in Equation 3): the quantization noise is typically not noticeable in pipeline converters and is 84 dB for a 14-bit ADC. The thermal noise limits the SNR at low input frequencies and the clock jitter sets the SNR for higher input frequencies.

Equation 3. ADS54J64 sgnl_to_noise_ratio_eq_sbas706.png

Equation 4 calculates the SNR limitation resulting from sample clock jitter:

Equation 4. ADS54J64 snr_limitation_eq_sbas706.png

The total clock jitter (TJitter) has two components: the internal aperture jitter (100 fS for the ADS54J64) that is set by the noise of the clock input buffer and the external clock jitter. Equation 5 calculates TJitter:

Equation 5. ADS54J64 total_jitter_eq_sbas706.png

External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as band-pass filters at the clock input; a faster clock slew rate also improves the ADC aperture jitter.

The ADS54J64 has a thermal noise of approximately 70 dBFS and an internal aperture jitter of 100 fS.

ADC Test Pattern

The ADS54J64 provides several different options to output test patterns instead of the actual output data of the ADC in order to simplify debugging of the JESD204B digital interface link. Figure 132 shows the output data path.

ADS54J64 ADC_tst_Pttrn_sbas841.gif Figure 132. ADC Test Pattern

ADC Section

The ADC test pattern replaces the actual output data of the ADC. These test patterns can be programmed using register 91h of the DIGTOP page. Table 65 lists the supported test patterns.

Table 65. ADC Test Pattern Settings

BIT NAME DEFAULT DESCRIPTION
7-4 TESTPATTERNSELECT 0000 These bits select the test pattern on the output when the test pattern is enabled for a suitable channel.
0 : Default
1 : All zeros
2 : All ones
3 : Toggle pattern
4 : Ramp pattern
6 : Custom pattern 1
7 : Toggles between custom pattern 1 and custom pattern 2
8 : Deskew pattern (AAAAh)

Transport Layer Pattern

The transport layer maps the ADC output data into 8-bit octets and constructs the JESD204B frames using the LMFS parameters. Tail bits or 0s are added when needed. Alternatively, as shown in Table 66, the JESD204B long transport layer test pattern can be substituted by programming register 20h.

Table 66. Transport Layer Test Mode

BIT NAME DEFAULT DESCRIPTION
4 TRANS_TEST_EN 0 This bit generates the long transport layer test pattern mode according to clause 5.1.6.3 of the JESD204B specification.
0 = Test mode disabled
1 = Test mode enabled

Link Layer Pattern

The link layer contains the scrambler and the 8b, 10b encoding of any data passed on from the transport layer. Additionally, the link layer also handles the initial lane alignment sequence that can be manually restarted. The link layer test patterns are intended for testing the quality of the link (jitter testing and so forth). The test patterns do not pass through the 8b, 10b encoder. These test patterns can be used by programming register 22h of the SERDES_XX page. Table 67 shows the supported programming options.

Table 67. Link Layer Test Mode

BIT NAME DEFAULT DESCRIPTION
7-5 LINK_LAYER_TESTMODE_SEL 000 These bits generate a pattern according to clause 5.3.3.8.2 of the JESD204B document.
0 : Normal ADC data
1 : D21.5 (high-frequency jitter pattern)
2 : K28.5 (mixed-frequency jitter pattern)
3 : Repeats initial lane alignment (generates a K28.5 character and continuously repeats lane alignment sequences)
4 : 12-octet RPAT jitter pattern
6 : PRBS pattern (PRBS7,15,23,31); use PRBS mode (register 36h) to select the PRBS pattern

Typical Application

The ADS54J64 is designed for wideband receiver applications demanding excellent dynamic range over a large input frequency range. Figure 133 shows a typical schematic for an ac-coupled dual receiver [dual field-programmable gate array (FPGA) with a dual SYNC].

ADS54J64 typ_app_sbas841.gif

NOTE:

GND = AGND and DGND are connected in the PCB layout.
Figure 133. Application Diagram for the ADS54J64

Design Requirements

By using the simple drive circuit of Figure 133 (when the amplifier drives the ADC) or Figure 46 (when transformers drive the ADC), uniform performance can be obtained over a wide frequency range. The buffers present at the analog inputs of the device help isolate the external drive source from the switching currents of the sampling circuit.

Detailed Design Procedure

For optimum performance, the analog inputs must be driven differentially. This architecture improves the common-mode noise immunity and even-order harmonic rejection. A small resistor (5 Ω to 10 Ω) in series with each input pin, as shown in Figure 133, is recommended to damp out ringing caused by package parasitics.

Application Curves

Figure 134 and Figure 135 show the typical performance at 190 MHz and 230 MHz, respectively.

ADS54J64 D002_SBAS807.gif
fIN = 190 MHz, AIN = –1 dBFS,
SNR = 69.4 dBFS, SFDR = 88 dBc, SFDR = 96 dBc (non 23)
Figure 134. FFT for 190-MHz Input Signal
ADS54J64 D006_SBAS807.gif
fIN = 230 MHz, AIN = –1 dBFS,
SNR = 69.4 dBFS, SFDR = 85 dBc, SFDR = 96 dBc (non 23)
Figure 135. FFT for 230-MHz Input Signal