ZHCSI90E December 2017 – October 2019 ISO1042
PRODUCTION DATA.
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
SUPPLY CHARACTERISTICS | ||||||
ICC1 | Supply current Side 1 | VCC1 =1.71 V to 1.89 V, TXD = 0 V, bus dominant | 2.3 | 3.5 | mA | |
VCC1 = 2.25 V to 5.5 V, TXD = 0 V, bus dominant | 2.4 | 3.5 | mA | |||
VCC1 = 1.71 V to 1.89 V, TXD = VCC1, bus recessive | 1.2 | 2.1 | mA | |||
VCC1 = 2.25 V to 5.5 V, TXD = VCC1, bus recessive | 1.3 | 2.1 | mA | |||
ICC2 | Supply current Side 2 | TXD = 0 V, bus dominant, RL = 60 Ω | 43 | 73.4 | mA | |
TXD = VCC1, bus recessive, RL = 60 Ω | 2.8 | 4.1 | mA | |||
UVVCC1 | Rising under voltage detection, Side 1 | 1.7 | V | |||
UVVCC1 | Falling under voltage detection, Side 1 | 1.0 | V | |||
VHYS(UVCC1) | Hysterisis voltage on VCC1 undervoltage lock-out | 75 | 125 | mV | ||
UVVCC2 | Rising under voltage detection, side 2 | 4.2 | 4.45 | V | ||
UVVCC2 | Falling under voltage detection, side 2 | 3.8 | 4.0 | 4.25 | V | |
VHYS(UVCC2) | Hysterisis voltage on VCC2 undervoltage lock-out | 200 | mV | |||
TXD TERMINAL | ||||||
VIH | High level input voltage | 0.7×VCC1 | V | |||
VIL | Low level input voltage | 0.3×VCC1 | V | |||
IIH | High level input leakage current | TXD = VCC1 | 1 | uA | ||
IIL | Low level input leakage current | TXD = 0V | -20 | uA | ||
CI | Input capacitance | VIN = 0.4 x sin(2 x π x 1E+6 x t) + 2.5 V, VCC1 = 5 V | 3 | pF | ||
RXD TERMINAL | ||||||
VOH - VCC1 | High level output voltage | See Figure 18, IO = -4 mA for 4.5 V ≤ VCC1 ≤ 5.5 V | -0.4 | -0.2 | V | |
See Figure 18, IO = -2 mA for 3.0 V ≤ VCC1 ≤ 3.6 V | -0.2 | -0.07 | V | |||
See Figure 18, IO = -1 mA for 2.25 V ≤ VCC1 ≤ 2.75 V | -0.1 | -0.04 | V | |||
See Figure 18, IO = -1 mA for 1.71 V ≤ VCC1 ≤ 1.89 V | -0.1 | -0.045 | V | |||
VOL | Low level output voltage | See Figure 18, IO = 4 mA for 4.5 V ≤ VCC1 ≤ 5.5 V | 0.2 | 0.4 | V | |
See Figure 18, IO = 2 mA for 3.0 V ≤ VCC1 ≤ 3.6 V | 0.07 | 0.2 | V | |||
See Figure 18, IO = 1 mA for 2.25 V ≤ VCC1 ≤ 2.75 V | 0.035 | 0.1 | V | |||
See Figure 18, IO = 1 mA for 1.71 V ≤ VCC1 ≤ 1.89 V | 0.04 | 0.1 | V | |||
DRIVER ELECTRICAL CHARACTERISTICS | ||||||
VO(DOM) | Bus output voltage(Dominant), CANH | See Figure 15 and Figure 16, TXD = 0 V, 50 Ω ≤ RL ≤ 65 Ω, CL = open | 2.75 | 4.5 | V | |
Bus output voltage(Dominant), CANL | See Figure 15 and Figure 16, TXD = 0 V, 50 Ω ≤ RL ≤ 65 Ω, CL = open | 0.5 | 2.25 | V | ||
VO(REC) | Bus output voltage(recessive), CANH and CANL | See Figure 15 and Figure 16, TXD = VCC1, RL = open | 2.0 | 0.5 x VCC2 | 3.0 | V |
VOD(DOM) | Differential output voltage, CANH-CANL (dominant) | See Figure 15 and Figure 16, TXD = 0 V, 45 Ω ≤ RL ≤ 50 Ω, CL = open | 1.4 | 3.0 | V | |
Differential output voltage, CANH-CANL (dominant) | See Figure 15 and Figure 16, TXD = 0 V, 50 Ω ≤ RL ≤ 65 Ω, CL = open | 1.5 | 3.0 | V | ||
Differential output voltage, CANH-CANL (dominant) | See Figure 15 and Figure 16, TXD = 0 V, RL = 2240 Ω, CL = open | 1.5 | 5.0 | V | ||
VOD(REC) | Differential output voltage, CANH-CANL (recessive) | See Figure 15 and Figure 16, TXD = VCC1, RL = 60 Ω, CL = open | -120.0 | 12.0 | mV | |
Differential output voltage, CANH-CANL (recessive) | See Figure 15 and Figure 16, TXD = VCC1, RL = open, CL = open | -50.0 | 50.0 | mV | ||
VSYM_DC | DC Output symmetry (VCC2 - VO(CANH) - VO(CANL)) | See Figure 15 and Figure 16, RL = 60 Ω, CL = open, TXD = VCC1 or 0 V | -400.0 | 400.0 | mV | |
ISO(SS_DOM) | Short circuit current steady state output current, dominant | See Figure 23, VCANH = -5 V to 40 V, CANL = open, TXD = 0 V | -100.0 | mA | ||
See Figure 23, VCANL = -5 V to 40 V, CANH = open, TXD = 0 V | 100.0 | mA | ||||
ISO(SS_REC) | Short circuit current steady state output current, recessive | See Figure 23, -27 V ≤ VBUS ≤ 32 V, VBUS = CANH = CANL, TXD = VCC1 | -5.0 | 5.0 | mA | |
RECEIVER ELECTRICAL CHARACTERISTICS | ||||||
VIT | Differential input threshold voltage | See Figure 18 and Table 1, |VCM| ≤ 20 V | 500.0 | 900.0 | mV | |
Differential input threshold voltage | See Figure 18 and Table 1, 20 V ≤ |VCM| ≤ 30 V | 400.0 | 1000.0 | |||
VHYS | Hysteresis voltage for differential input threshold | See Figure 18 and Table 1 | 120 | |||
VCM | Input common mode range | See Figure 18 and Table 1 | -30.0 | 30.0 | V | |
IOFF(LKG) | Power-off bus input leakage current | CANH = CANL = 5 V, VCC2 to GND via 0 Ω and 47 kΩ resistor | 4.8 | uA | ||
CI | Input capacitance to ground (CANH or CANL) | TXD = VCC1 | 24.0 | 30 | pF | |
CID | Differential input capacitance (CANH-CANL) | TXD = VCC1 | 12.0 | 15 | pF | |
RID | Differential input resistance | TXD = VCC1 ; -30 V ≤ VCM ≤ +30 V | 30.0 | 80.0 | kΩ | |
RIN | Input resistance (CANH or CANL) | TXD = VCC1 ; -30 V ≤ VCM ≤ +30 V | 15.0 | 40.0 | kΩ | |
RIN(M) | Input resistance matching: (1 - RIN(CANH)/RIN(CANL)) x 100% | VCANH = VCANL = 5 V | -2.0 | 2.0 | % | |
THERMAL SHUTDOWN | ||||||
TTSD | Thermal shutdown temperature | 170 | ℃ | |||
TTSD_HYST | Thermal shutdown hysteresis | 5 | ℃ |