ZHCSI90E December   2017  – October 2019 ISO1042

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     703A I2C
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions—16 Pins
    2.     Pin Functions—8 Pins
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Transient Immunity
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Power Ratings
    7. 6.7  Insulation Specifications
    8. 6.8  Safety-Related Certifications
    9. 6.9  Safety Limiting Values
    10. 6.10 Electrical Characteristics - DC Specification
    11. 6.11 Switching Characteristics
    12. 6.12 Insulation Characteristics Curves
    13. 6.13 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Test Circuits
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 CAN Bus States
      2. 8.3.2 Digital Inputs and Outputs: TXD (Input) and RXD (Output)
      3. 8.3.3 Protection Features
        1. 8.3.3.1 TXD Dominant Timeout (DTO)
        2. 8.3.3.2 Thermal Shutdown (TSD)
        3. 8.3.3.3 Undervoltage Lockout and Default State
        4. 8.3.3.4 Floating Pins
        5. 8.3.3.5 Unpowered Device
        6. 8.3.3.6 CAN Bus Short Circuit Current Limiting
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Bus Loading, Length and Number of Nodes
        2. 9.2.2.2 CAN Termination
      3. 9.2.3 Application Curve
    3. 9.3 DeviceNet Application
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 PCB Material
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 文档支持
      1. 12.1.1 相关文档
    2. 12.2 接收文档更新通知
    3. 12.3 社区资源
    4. 12.4 商标
    5. 12.5 静电放电警告
    6. 12.6 Glossary
  13. 13机械、封装和可订购信息

Typical Characteristics

ISO1042 D001_SLLSF09.gif
VCC1 = 5 V RL = 60 Ω CL(RXD) = 15 pF
Temp = 25°C
Figure 5. ICC2 vs VCC2 for Recessive, Dominant and Different CAN Datarates
ISO1042 D003_SLLSF09.gif
VCC1 = VCC2 = 5 V RL = 60 Ω CL(RXD) = 15 pF
Figure 7. ICC2 vs Ambient Temperature for Recessive, Dominant and Different CAN Datarates
ISO1042 D005_SLLSF09.gif
VCC1 = VCC2 = 5 V RL = 60 Ω CL(RXD) = 15 pF
Figure 9. Loop Delay vs Ambient Temperature
ISO1042 D002_SLLSES7.gif
VCC1 = 5 V RL = 60 Ω
CL = Open Temp = 25°C
Figure 11. VOD(DOM) Over VCC
ISO1042 sllsF09-glitch-free-power-up-on-vcc1-can-bus-remains-recessive.png
TXD = VCC1 RL = 60 Ω VCC1 = VCC2 = 5 V
Figure 13. Glitch Free Power Up on VCC1 – CAN Bus Remains Recessive
ISO1042 D002_SLLSF09.gif
VCC2 = 5 V RL = 60 Ω CL(RXD) = 15 pF
Temp = 25°C
Figure 6. ICC1 vs Datarate
ISO1042 D004_SLLSF09.gif
VCC1 = VCC2 = 5 V RL = 60 Ω CL(RXD) = 15 pF
Temp = 25°C
Figure 8. : ICC1 vs Ambient Temperature for Recessive, Dominant and Different CAN Datarates.
ISO1042 D001_SLLSES7.gif
VCC = 5 V VCC1 = 5 V RL = 60 Ω
CL = Open
Figure 10. VOD(DOM) Over Temperature
ISO1042 sllsF09-typical-txd-rxd-canh-and-canl-waveforms-at-1-mbps.png
VCC1 = VCC2 = 5 V RL = 60 Ω CL = 100 pF
CL(RXD) = 15 pF
Figure 12. Typical TXD, RXD, CANH and CANL Waveforms at 1 Mbps
ISO1042 sllsF09-glitch-free-power-up-on-vcc2-can-bus-remains-recessive.png
TXD = VCC1 RL = 60 Ω VCC1 = VCC2 = 5 V
Figure 14. Glitch Free Power Up on VCC2 – CAN Bus Remains Recessive