ZHCSIL1A July   2018  – December 2018 DSLVDS1001

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     功能图
    2.     典型应用
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 DSLVDS1001 Driver Functionality
      2. 8.3.2 Driver Output Voltage and Power-On Reset
      3. 8.3.3 Driver Offset
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Point-to-Point Communications
    3. 9.3 Design Requirements
    4. 9.4 Detailed Design Procedure
      1. 9.4.1 Driver Supply Voltage
      2. 9.4.2 Driver Bypass Capacitance
      3. 9.4.3 Driver Input Voltage
      4. 9.4.4 Driver Output Voltage
      5. 9.4.5 Interconnecting Media
      6. 9.4.6 PCB Transmission Lines
      7. 9.4.7 Termination Resistor
    5. 9.5 Application Curve
  10. 10Power Supply Recommendations
    1. 10.1 Power Supply Considerations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Microstrip vs. Stripline Topologies
      2. 11.1.2 Dielectric Type and Board Construction
      3. 11.1.3 Recommended Stack Layout
      4. 11.1.4 Separation Between Traces
      5. 11.1.5 Crosstalk and Ground Bounce Minimization
      6. 11.1.6 Decoupling
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 文档支持
      1. 12.1.1 相关文档
    2. 12.2 接收文档更新通知
    3. 12.3 社区资源
    4. 12.4 商标
    5. 12.5 静电放电警告
    6. 12.6 术语表
  13. 13机械、封装和可订购信息

Dielectric Type and Board Construction

The speeds at which signals travel across the board dictates the choice of dielectric. FR-4, or equivalent, usually provides adequate performance for use with LVDS signals. If rise or fall times of LVCMOS/LVTTL signals are less than 500 ps, empirical results indicate that a material with a dielectric constant near 3.4, such as Rogers™ 4350 or Nelco N4000-13 is better suited. When the designer chooses the dielectric, there are several parameters pertaining to the board construction that can affect performance. The following set of guidelines were developed experimentally through several designs involving LVDS devices:

  • Copper weight: 15 g or 1/2 oz start, plated to 30 g or 1 oz
  • All exposed circuitry should be solder-plated (60/40) to 7.62 μm or 0.0003 in (minimum).
  • Copper plating should be 25.4 μm or 0.001 in (minimum) in plated-through-holes.
  • Solder mask over bare copper with solder hot-air leveling