ZHCSKD1C October   2019  – January 2021 TCA9511A

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Hot bus insertion
      2. 8.3.2 Pre-charge voltage
      3. 8.3.3 Rise time accelerators
      4. 8.3.4 Bus ready output indicator
      5. 8.3.5 Powered-off high impedance for I2C and I/O pins
      6. 8.3.6 Supports clock stretching and arbitration
    4. 8.4 Device Functional Modes
      1. 8.4.1 Start-up and precharge
      2. 8.4.2 Bus idle
      3. 8.4.3 Bus active
  9. Application Information Disclaimer
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Series connections
        2. 9.2.1.2 Multiple connections to a common node
        3. 9.2.1.3 Propagation delays
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Typical Application on a Backplane
      1. 9.3.1 Design Requirements
      2. 9.3.2 Detailed Design Procedure
  10. 10Power Supply Recommendations
    1. 10.1 Power Supply Best Practices
    2. 10.2 Power-on Reset Requirements
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 支持资源
    3. 12.3 Trademarks
    4. 12.4 静电放电警告
    5. 12.5 术语表
  13. 13Mechanical, Packaging, and Orderable Information

Bus active

In the bus active mode, the I2C IN and OUT pins are connected, and the input is passed bi-directionally from IN/OUT side of the bus to the OUT/IN side respectively. The buses remain connected until the EN pin is taken low.

When the bus is connected, the driven-low side of the device is reflected on the opposite side, but with a small offset voltage. For example, if the input is pulled low to 100 mV, the output side will be pulled to roughly 150 mV. This offset allows the device to determine which side is currently being driven and avoid getting stuck low.