ZHCSL09C April   2020  – December 2020 LM7480-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Switching Characteristics
    7. 7.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Charge Pump
      2. 9.3.2 Dual Gate Control (DGATE, HGATE)
        1. 9.3.2.1 Reverse Battery Protection (A, C, DGATE)
        2. 9.3.2.2 Load Disconnect Switch Control (HGATE, OUT)
      3. 9.3.3 Overvoltage Protection and Battery Voltage Sensing (VSNS, SW, OV)
      4. 9.3.4 Low Iq Shutdown and Under Voltage Lockout (EN/UVLO)
    4. 9.4 Device Functional Modes
    5. 9.5 Application Examples
      1. 9.5.1 Redundant Supply OR-ing with Inrush Current Limiting, Overvoltage Protection and ON/OFF Control
      2. 9.5.2 Ideal Diode with Unsuppressed Load Dump Protection
  10. 10Applications and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical 12-V Reverse Battery Protection Application
      1. 10.2.1 Design Requirements for 12-V Battery Protection
      2. 10.2.2 Automotive Reverse Battery Protection
        1. 10.2.2.1 Input Transient Protection: ISO 7637-2 Pulse 1
        2. 10.2.2.2 AC Super Imposed Input Rectification: ISO 16750-2 and LV124 E-06
        3. 10.2.2.3 Input Micro-Short Protection: LV124 E-10
      3. 10.2.3 Detailed Design Procedure
        1. 10.2.3.1 Design Considerations
        2. 10.2.3.2 Charge Pump Capacitance VCAP
        3. 10.2.3.3 Input and Output Capacitance
        4. 10.2.3.4 Hold-Up Capacitance
        5. 10.2.3.5 Overvoltage Protection and Battery Monitor
      4. 10.2.4 MOSFET Selection: Blocking MOSFET Q1
      5. 10.2.5 MOSFET Selection: Hot-Swap MOSFET Q2
      6. 10.2.6 TVS Selection
      7. 10.2.7 Application Curves
    3. 10.3 200-V Unsuppressed Load Dump Protection Application
      1. 10.3.1 Design Requirements for 200-V Unsuppressed Load Dump Protection
      2. 10.3.2 Design Procedure
        1. 10.3.2.1 Charge Pump Capacitance VCAP
        2. 10.3.2.2 Input and output capacitance
        3. 10.3.2.3 VS Capacitance, Resistor and Zener Clamp
        4. 10.3.2.4 Overvoltage Protection and Output Clamp
        5. 10.3.2.5 MOSFET Q1 Selection
        6. 10.3.2.6 Input TVS Selection
        7. 10.3.2.7 MOSFET Q2 Selection
      3. 10.3.3 Application Curves
    4. 10.4 Do's and Don'ts
  11. 11Power Supply Recommendations
    1. 11.1 Transient Protection
    2. 11.2 TVS Selection for 12-V Battery Systems
    3. 11.3 TVS Selection for 24-V Battery Systems
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Receiving Notification of Documentation Updates
    2. 13.2 Support Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Electrical Characteristics

TJ = –40°C to +125°C; typical values at TJ = 25°C, V(A) =  V(OUT) = V(VS) = V(VSNS) = 12 V, V(AC) = 20 mV, C(VCAP) = 0.1 µF, V(EN/UVLO) = 2 V, over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY VOLTAGE
V(VS) Operating input voltage 3 65 V
V(VS_PORR) VS POR threshold, rising 2.4 2.6 2.85 V
V(VS_PORF) VS POR threshold, falling 1.9 2.1 2.3 V
I(SHDN) SHDN current, I(GND) V(EN/UVLO) = 0 V 2.87 5 µA
I(Q) Total System Quiescent current, I(GND) V(EN/UVLO) = 2 V 397 µA
V(A) =  V(VS) = 24 V, V(EN/UVLO) = 2 V 413 495 µA
I(REV) I(A)  leakage current during Reverse Polarity, 0 V ≤ V(A) ≤ – 65 V 19 112 µA
I(OUT) leakage current during Reverse Polarity 1 µA
ENABLE AND UNDERVOLTAGE LOCKOUT (EN/UVLO) INPUT
V(UVLOR) EN/UVLO threshold voltage, rising 1.195 1.231 1.267 V
V(UVLOF) EN/UVLO threshold voltage, falling 1.091 1.132 1.159 V
V(ENF) Enable threshold voltage for low Iq shutdown, falling 0.3 0.67 0.93 V
V(EN_Hys) Enable Hysteresis 37 72 95 mV
I(EN/UVLO) 0 V ≤ V(EN/UVLO) ≤  65 V 52 200 nA
OVERVOLTAGE PROTECTION AND BATTERY SENSING (VSNS, SW, OV) INPUT
R(SW) Battery sensing disconnect switch resistance 3 V ≤ V(SNS) ≤ 65 V 10 19.5 46
V(OVR) Overvoltage threshold input, rising 1.195 1.231 1.267 V
V(OVF) Overvoltage threshold input, falling 1.091 1.13 1.159 V
I(OV) OV Input leakage current 0 V ≤ V(OV) ≤ 65 V 53 200 nA
CHARGE PUMP (CAP)
I(CAP) Charge Pump source current (Charge pump on) V(CAP) – V(A) = 7 V, 6 V ≤ V(S) ≤ 65 V 1.3 2.7 mA
VCAP – VS Charge Pump Turn ON voltage 11 12.2 13.2 V
Charge Pump Turnoff voltage 11.9 13.2 14.1 V
V(CAP UVLO) Charge Pump UVLO voltage threshold, rising 5.4 6.6 7.9 V
Charge Pump UVLO voltage threshold, falling 4.4 5.5 6.6 V
IDEAL DIODE (A, C, DGATE)
V(A_PORR) V(A) POR threshold, rising 2.2 2.35 2.6 V
V(A_PORF) V(A) POR threshold, falling 2 2.2 2.4 V
V(AC_REG) Regulated Forward V(A)–V(C) Threshold For LM74800-Q1 Only 6.8 10.5 13.4 mV
V(AC_REV) V(A)–V(C) Threshold for Fast Reverse Current Blocking –6.4 –4.5 –1.3 mV
V(AC_FWD) V(A)–V(C) Threshold for Reverse to Forward transition 150 177 200 mV
V(DGATE) – V(A) Gate Drive Voltage 3 V < V(S) < 5 V 7 V
5 V < V(S) < 65 V 10 11.5 13 V
I(DGATE) Peak Gate Source current V(A) – V(C) = 100 mV, V(DGATE) – V(A) = 1 V 20 mA
Peak Gate Sink current V(A) – V(C) = –12 mV, V(DGATE) – V(A) = 11 V 2670 mA
Regulation sink current V(A) – V(C) = 0 V, V(DGATE) – V(A) = 11 V, LM74800-Q1 Only 8.4 12.3 µA
I(C) Cathode leakage Current V(A) = –14 V, V(C) = 12 V, LM74801-Q1  0.1 2.84 15 µA
V(A) = –14 V, V(C) = 12 V, LM74800-Q1  4 8.77 32 µA
HIGH SIDE CONTROLLER (HGATE, OUT, SNS, SW, OV)
V(HGATE) – V(OUT) Gate Drive Voltage 3 V < V(S) < 5 V 7 V
5 V < V(S) < 65 V 10 11.1 14.5 V
I(HGATE) Source Current 39 55 75 µA
Sink Current V(OV) > V(OVR) 168 260 mA