ZHCSLK6A July   2021  – December 2021 TPS1HC100-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
    1. 5.1 Recommended Connections for Unused Pins
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SNS Timing Characteristics
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Accurate Current Sense
      2. 8.3.2 Programmable Current Limit
        1. 8.3.2.1 Capacitive Charging
      3. 8.3.3 Inductive-Load Switching-Off Clamp
      4. 8.3.4 Full Protections and Diagnostics
        1. 8.3.4.1  Short-Circuit and Overload Protection
        2. 8.3.4.2  Open-Load and Short-to-Battery Detection
        3. 8.3.4.3  Short-to-Battery Detection
        4. 8.3.4.4  Reverse-Polarity and Battery Protection
        5. 8.3.4.5  Latch-Off Mode
        6. 8.3.4.6  Thermal Protection Behavior
        7. 8.3.4.7  UVLO Protection
        8. 8.3.4.8  Loss of GND Protection
        9. 8.3.4.9  Loss of Power Supply Protection
        10. 8.3.4.10 Reverse Current Protection
        11. 8.3.4.11 Protection for MCU I/Os
      5. 8.3.5 Diagnostic Enable Function
    4. 8.4 Device Functional Modes
      1. 8.4.1 Working Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Dynamically Changing Current Limit
        2. 9.2.2.2 AEC Q100-012 Test Grade A Certification
        3. 9.2.2.3 EMC Transient Disturbances Test
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
      1. 11.2.1 Without a GND Network
      2. 11.2.2 With a GND Network
    3. 11.3 Thermal Considerations
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 接收文档更新通知
    3. 12.3 支持资源
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 术语表
  13. 13Mechanical, Packaging, and Orderable Information

Open-Load and Short-to-Battery Detection

When the main channel is enabled faults are diagnosed by reading the voltage on the SNS or FLT pin and evaluated by the user. A benefit of high-accuracy current sense is that this device can achieve a very low open-load detection threshold, which correspondingly expands the normal operation region. TI suggests 5 mA as the upper limit for the open-load detection threshold and 15 mA as the lower limit for the normal operation current. In Figure 8-13, the recommended open-load detection region is shown as the dark-shaded region and the light-shaded region is for normal operation. As a guideline, do not overlap these two regions.

GUID-913F5287-C429-4E75-A5AA-94A154944F3A-low.gifFigure 8-13 On-State Open-Load Detection and Normal-Operation Diagram

In the off state, if a load is connected, the output voltage is pulled to 0 V. In the case of an open load, the output voltage is close to the supply voltage, VBB – VOUT < Vol,off. The FLT pin goes low to indicate the fault to the MCU, and the SNS pin is pulled up to ISNSFH. There is always a leakage current Iol,off present on the output, due to the internal logic control path or external humidity, corrosion, and so forth. Thus, TI implemented an internal pullup resistor to offset the leakage current. This pullup current must be less than the output load current to avoid false detection in the normal operation mode. To reduce the standby current, TI implemented a switch in series with the pullup resistor controlled by the DIAG_EN pin. The pull up resistor value is Rpu ≤ 150 kΩ.

Figure 8-14 Open-Load Detection Circuit