ZHCSLN5D december   2010  – september 2020 BQ24133

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. Description (continued)
  7. Device Comparison Table
  8. Pin Configuration and Functions
    1.     Pin Functions
  9. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Typical Characteristics
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Battery Voltage Regulation
      2. 9.3.2  Battery Current Regulation
      3. 9.3.3  Battery Precharge Current Regulation
      4. 9.3.4  Input Current Regulation
      5. 9.3.5  Charge Termination, Recharge, And Safety Timers
      6. 9.3.6  Power Up
      7. 9.3.7  Input Undervoltage Lockout (UVLO)
      8. 9.3.8  Input Overvoltage/Undervoltage Protection
      9. 9.3.9  Enable and Disable Charging
      10. 9.3.10 System Power Selector
      11. 9.3.11 Converter Operation
      12. 9.3.12 Automatic Internal Soft-Start Charger Current
      13. 9.3.13 Charge Overcurrent Protection
      14. 9.3.14 Charge Undercurrent Protection
      15. 9.3.15 Battery Detection
        1. 9.3.15.1 Example
      16. 9.3.16 Battery Short Protection
      17. 9.3.17 Battery Overvoltage Protection
      18. 9.3.18 Temperature Qualification
      19. 9.3.19 MOSFET Short Circuit and Inductor Short Circuit Protection
      20. 9.3.20 Thermal Regulation and Shutdown Protection
      21. 9.3.21 Timer Fault Recovery
      22. 9.3.22 Charge Status Outputs
    4. 9.4 Device Functional Modes
  11. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Inductor Selection
        2. 10.2.2.2 Input Capacitor
        3. 10.2.2.3 Output Capacitor
        4. 10.2.2.4 Input Filter Design
        5. 10.2.2.5 Input ACFET and RBFET Selection
        6. 10.2.2.6 Inductor, Capacitor, and Sense Resistor Selection Guidelines
      3. 10.2.3 Application Curve
    3. 10.3 System Examples
  12. 11Power Supply Recommendations
  13. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Examples
  14. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 第三方米6体育平台手机版_好二三四免责声明
    2. 13.2 接收文档更新通知
    3. 13.3 支持资源
    4. 13.4 Trademarks
    5. 13.5 静电放电警告
    6. 13.6 术语表
  15. 14Mechanical, Packaging, and Orderable Information

Input Filter Design

During adapter hot plug-in, the parasitic inductance and the input capacitor from the adapter cable form a second-order system. The voltage spike at the AVCC pin may be beyond the IC maximum voltage rating and damage the IC. The input filter must be carefully designed and tested to prevent an overvoltage event on the AVCC pin.

There are several methods to damping or limiting the overvoltage spike during adapter hot plug-in. An electrolytic capacitor with high ESR as an input capacitor can damp the overvoltage spike well below the IC maximum pin voltage rating. A high-current capability TVS Zener diode can also limit the overvoltage level to an IC safe level. However, these two solutions may not be lowest cost or smallest size.

A cost-effective and small-size solution is shown in Figure 10-2. R1 and C1 are composed of a damping RC network to damp the hot plug-in oscillation. As a result, the overvoltage spike is limited to a safe level. D1 is used for reverse voltage protection for the AVCC pin. C2 is the AVCC pin decoupling capacitor and it should be placed as close as possible to the AVCC pin. R2 and C2 form a damping RC network to further protect the IC from high dv/dt and high voltage spike. The C2 value should be less than the C1 value so R1 can dominant the equivalent ESR value to get enough damping effect for hot plug-in. R1 and R2 must be sized enough to handle in-rush current power loss according to the resistor manufacturer’s data sheet. The filter component values always need to be verified with a real application and minor adjustments may be needed to fit in the real application circuit.

If the input is 5 V (USB host or USB adapter), then D1 can be saved. R2 has to be 5 Ω or higher to limit the current if the input is reversely inserted.

GUID-074CDDE6-7B77-47FE-B271-DF0E2956557A-low.gifFigure 10-2 Input Filter