ZHCSMU0D July   2009  – December 2020 TPS23753A

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Product Information
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: Controller Section Only
    6. 7.6 Electrical Characteristics: PoE and Control
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Pin Description
        1. 8.3.1.1  APD
        2. 8.3.1.2  BLNK
        3. 8.3.1.3  CLS
        4. 8.3.1.4  CS
        5. 8.3.1.5  CTL
        6. 8.3.1.6  DEN
        7. 8.3.1.7  FRS
        8. 8.3.1.8  GATE
        9. 8.3.1.9  RTN
        10. 8.3.1.10 VB
        11. 8.3.1.11 VC
        12. 8.3.1.12 VDD
        13. 8.3.1.13 VDD1
        14. 8.3.1.14 VSS
    4. 8.4 Device Functional Modes
      1. 8.4.1  Threshold Voltages
      2. 8.4.2  PoE Start-Up Sequence
      3. 8.4.3  Detection
      4. 8.4.4  Hardware Classification
      5. 8.4.5  Maintain Power Signature (MPS)
      6. 8.4.6  TPS23753A Operation
        1. 8.4.6.1 Start-Up and Converter Operation
        2. 8.4.6.2 PD Self-Protection
        3. 8.4.6.3 Converter Controller Features
      7. 8.4.7  Special Switching MOSFET Considerations
      8. 8.4.8  Thermal Considerations
      9. 8.4.9  FRS and Synchronization
      10. 8.4.10 Blanking – RBLNK
      11. 8.4.11 Current Slope Compensation
      12. 8.4.12 Adapter ORing
      13. 8.4.13 Protection
      14. 8.4.14 Frequency Dithering for Conducted Emissions Control
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Support Resources
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Blanking – RBLNK

The TPS23753A BLNK feature permits programming of the blanking period with specified tolerance. Selection of the blanking period is often empirical because it is affected by parasitics and thermal effects of every device between the gate-driver and output capacitors.

There is a critical range of blanking period that is bounded on the short side by erratic operation, and on the long side by potentially harmful switching-MOSFET and output rectifier currents during a short circuit. The minimum blanking period prevents the current limit and PWM comparators from being falsely triggered by the inherent current spike that occurs when the switching MOSFET turns on. The maximum blanking period is bounded by the ability of the output rectifier to withstand the currents experienced during a converter output short.

The TPS23753A provides a choice between internal fixed and programmable blanking periods. The blanking period is specified as an increase in the minimum GATE on time over the inherent gate driver and comparator delays. The default period (see Electrical Characteristics: Controller Section Only and Electrical Characterisics: PoE and Control) is selected by connecting BLNK to RTN, and the programmable period is set with a resistor from BLNK to RTN using Equation 6.

Equation 6. GUID-C8EAB93F-9882-4D8A-89BD-F4695D3ED36A-low.gif

For example, a 100-ns period is programmed by a 100-kΩ resistor. For a brand-new design, TI recommends designing an initial blanking period of 125 ns. This period must be turned when the converter is operational.